Abdel-Rassoul, G, El-Fateh, OA, Salem, MA, Michael, A, Farahat, F, El-Batanouny, M, and Salem, E (2007). Neurobehavioral effects among inhabitants around mobile phone base stations. Neurotoxicology. 28, 434-440.
Al-Sarraf, H, and Philip, L (2003). Effect of hypertension on the integrity of blood brain and blood CSF barriers, cerebral blood flow and CSF secretion in the rat. Brain Res. 975, 179-188.
Aldad, TS, Gan, G, Gao, X-B, and Taylor, HS (2012). Fetal radiofrequency radiation exposure from 800–1900 Mhz-rated cellular telephones affects neurodevelopment and behavior in mice. Sci Rep. 2, 312.
Altun, G, Deniz, ØG, Yurt, KK, Davis, D, and Kaplan, S (2018). Effects of mobile phone exposure on metabolomics in the male and female reproductive systems. Environ Res. 167, 700-707.
Ammari, M, Jeljeli, M, Maaroufi, K, Roy, V, Sakly, M, and Abdelmelek, H (2008). Static magnetic field exposure affects behavior and learning in rats. Electromagn Biol Med. 27, 185-196.
Arendash, GW, Sanchez-Ramos, J, Mori, T, Mamcarz, M, Lin, X, Runfeldt, M, Wang, L, Zhang, G, Sava, V, Tan, J, and Cao, C (2010). Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J Alzheimers Dis. 19, 191-210.
Baan, R, Grosse, Y, Lauby-Secretan, B, El Ghissassi, F, Bouvard, V, Benbrahim-Tallaa, L, Guha, N, Islami, F, Galichet, L, and Straif, K (2011). Carcinogenicity of radiofrequency electromagnetic fields.. Lancet Oncol.. 12, 624-626.
Banaceur, S, Banasr, S, Sakly, M, and Abdelmelek, H (2013). Whole body exposure to 2.4 GHz WIFI signals: effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer’s disease (3xTg-AD).. Behav. Brain Res.. 240, 197-201.
Barr, R, Jones, DL, and Rodger, CJ (2000). ELF and VLF radio waves.. J. Atmospheric Sol.-Terr. Phys.. 62, 1689-1718.
Barthélémy, A, Mouchard, A, Bouji, M, Blazy, K, Puigsegur, R, and Villégier, A-S (2016). Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures. Environ Sci Pollut Res Int. 23, 25343-25355.
Belpomme, D, Campagnac, C, and Irigaray, P (2015). Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder.. Rev. Environ. Health. 30, 251-271.
Benson, VS, Pirie, K, Schuz, J, Reeves, GK, Beral, V, and Green, J (2013). Mobile phone use and risk of brain neoplasms and other cancers: prospective study. Int J Epidemiol. 42, 792-802.
Bhatheja, K, and Field, J (2006). Schwann cells: origins and role in axonal maintenance and regeneration. Int J Biochem Cell Biol. 38, 1995-1999.
Birks, L, Guxens, M, Papadopoulou, E, Alexander, J, Ballester, F, Estarlich, M, Gallastegi, M, Ha, M, Haugen, M, Huss, A, Kheifets, L, Lim, H, Olsen, J, Santa-Marina, L, Sudan, M, Vermeulen, R, Vrijkotte, T, Cardis, E, and Vrijheid, M (2017). Maternal cell phone use during pregnancy and child behavioral problems in five birth cohorts. Environ Int. 104, 122-131.
Birks, LE, Struchen, B, Eeftens, M, Van Wel, L, Huss, A, Gajšek, P, Kheifets, L, Gallastegi, M, Dalmau-Bueno, A, Estarlich, M, Fernandez, MF, Meder, IK, Ferrero, A, Jiménez-Zabala, A, Torrent, M, Vrijkotte, TGM, Cardis, E, Olsen, J, Valič, B, Vermeulen, R, Vrijheid, M, Röösli, M, and Guxens, M (2018). Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe. Environ Int. 117, 204-214.
Bouji, M, Lecomte, A, Gamez, C, Blazy, K, and Villegier, AS (2016). Neurobiological effects of repeated radiofrequency exposures in male senescent rats. Biogerontology. 17, 841-857.
Braune, S, Wrocklage, C, Raczek, J, Gailus, T, and Lucking, CH (1998). Resting blood pressure increase during exposure to a radiofrequency electromagnetic field. Lancet. 351, 1857-1858.
Buckner, CA, Buckner, AL, Koren, SA, Persinger, MA, and Lafrenie, RM (2015). Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels. PLoS ONE. 10, e0124136.
Calvente, I, Pérez-Lobato, R, Núñez, M-I, Ramos, R, Guxens, M, Villalba, J, Olea, N, and Fernández, MF (2016). Does exposure to environmental radiofrequency electromagnetic fields cause cognitive and behavioral effects in 10-year-old boys?. Bioelectromagnetics. 37, 25-36.
Cassel, JC, Cosquer, B, Galani, R, and Kuster, N (2004). Wholebody exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats.. Behav. Brain Res.. 155, 37-43.
Cobb, BL, Jauchem, JR, and Adair, ER (2004). Radial arm maze performance of rats following repeated low level microwave radiation exposure. Bioelectromagnetics. 25, 49-57.
Cosquer, B, Vasconcelos, AP, Frohlich, J, and Cassel, JC (2005). Blood-brain barrier and electromagnetic fields: effects of scopolamine methylbromide on working memory after whole-body exposure to 2.45 GHz microwaves in rats.. Behav. Brain Res.. 161, 229-237.
Cucurachi, S, Tamis, WLM, Vijver, MG, Peijnenburg, WJGM, Bolte, JFB, and De Snoo, GR (2013). A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ Int. 51, 116-140.
Cui, Y, Liu, X, Yang, T, Mei, Y-A, and Hu, C (2014). Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway. Cell Calcium. 55, 48-58.
D’andrea, JA, Chou, CK, Johnston, SA, and Adair, ER (2003). Microwave effects on the nervous system. Bioelectromagnetics. Suppl 6, S107-S147.
Danker-Hopfe, H, Dorn, H, Bolz, T, Peter, A, Hansen, M-L, Eggert, T, and Sauter, C (2016). Effects of mobile phone exposure (GSM 900 and WCDMA/UMTS) on polysomnography based sleep quality: an intra- and inter-individual perspective. Environ Res. 145, 50-60.
Demsia, G, Vlastos, D, and Matthopoulos, DP (2004). Effect of 910-MHz electromagnetic field on rat bone marrow. ScientificWorld-Journal. 4, 48-54.
Dubreuil, D, Jay, T, and Edeline, JM (2002). Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks?. Behav Brain Res. 129, 203-210.
Dubreuil, D, Jay, T, and Edeline, JM (2003). Head-only exposure to GSM 900-MHz electromagnetic fields does not alter rat’s memory in spatial and non-spatial tasks. Behav Brain Res. 145, 51-61.
Elder, JA (2003). Ocular effects of radiofrequency energy. Bioelectromagnetics. Suppl 6, S148-S161.
Elliott, P, Toledano, MB, Bennett, J, Beale, L, De Hoogh, K, Best, N, and Briggs, DJ (2010). Mobile phone base stations and early childhood cancers: case-control study. BMJ. 340, c3077.
Falzone, N, Huyser, C, Becker, P, Leszczynski, D, and Franken, DR (2011). The effect of pulsed 900-MHz GSM mobile phone radiation on the acrosome reaction, head morphometry and zona binding of human spermatozoa. Int J Androl. 34, 20-26.
Feng, Y, He, D, Yao, Z, and Klionsky, DJ (2014). The machinery of macroautophagy. Cell Res. 24, 24-41.
Franke, H, Ringelstein, EB, and Stogbauer, F (2005). Electromagnetic fields (GSM 1800) do not alter blood-brain barrier permeability to sucrose in models in vitro with high barrier tightness. Bioelectromagnetics. 26, 529-535.
Frey, AH (1998). Headaches from cellular telephones: are they real and what are the implications?. Environ Health Perspect. 106, 101-103.
Fritze, K, Sommer, C, Schmitz, B, Mies, G, Hossmann, KA, Kiessling, M, and Wiessner, C (1997). Effect of global system for mobile communication (GSM) microwave exposure on blood-brain barrier permeability in rat. Acta Neuropathol. 94, 465-470.
Fujimoto, C, Iwasaki, S, Urata, S, Morishita, H, Sakamaki, Y, Fujioka, M, Kondo, K, Mizushima, N, and Yamasoba, T (2017). Autophagy is essential for hearing in mice. Cell Death Dis. 8, e2780.
Gruber, MJ, Palmquist, E, and Nordin, S (2018). Characteristics of perceived electromagnetic hypersensitivity in the general population. Scand J Psychol. 59, 422-427.
Hardell, L, Carlberg, M, and Hansson Mild, K (2005). Use of cellular telephones and brain tumour risk in urban and rural areas. Occup Environ Med. 62, 390-394.
Hardell, L, Carlberg, M, Soderqvist, F, Mild, KH, and Morgan, LL (2007). Long-term use of cellular phones and brain tumours: increased risk associated with use for > or =10 years. Occup Environ Med. 64, 626-632.
Hinrikus, H, Bachmann, M, and Lass, J (2018). Understanding physical mechanism of low-level microwave radiation effect. Int J Radiat Biol. 94, 877-882.
Hoeijmakers, JH (2009). DNA damage, aging, and cancer. N Engl J Med. 361, 1475-1485.
Hollenbach, DF, and Herndon, JM (2001). Deep-earth reactor: nuclear fission, helium, and the geomagnetic field. Proc Natl Acad Sci U S A. 98, 11085-11090.
Hossmann, KA, and Hermann, DM (2003). Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagnetics. 24, 49-62.
Hutter, HP, Moshammer, H, Wallner, P, and Kundi, M (2006). Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone base stations. Occup Environ Med. 63, 307-313.
, (1998). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection.. Health Phys.. 74, 494-522.
İkinci, A, Mercantepe, T, Unal, D, Erol, HS, Şahin, A, Aslan, A, Baş, O, Erdem, H, Sönmez, OF, Kaya, H, and Odacı, E (2016). Morphological and antioxidant impairments in the spinal cord of male offspring rats following exposure to a continuous 900MHz electromagnetic field during early and mid-adolescence. J Chem Neuroanat. 75, 99-104.
Jeong, YJ, Kang, G-Y, Kwon, JH, Choi, H-D, Pack, J-K, Kim, N, Lee, Y-S, and Lee, H-J (Array). MHz electromagnetic fields ameliorate aβ pathology in Alzheimer’s disease mice. Curr Alzheimer Res. 12, 481-492.
Jiang, D-P, Li, J-H, Zhang, J, Xu, S-L, Kuang, F, Lang, H-Y, Wang, Y-F, An, G-Z, Li, J, and Guo, G-Z (2016). Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1. Brain Res. 1642, 10-19.
Jirik, V, Pekarek, L, Janout, V, and Tomaskova, H (2012). Association between childhood leukaemia and exposure to power-frequency magnetic fields in Middle Europe. Biomed Environ Sci. 25, 597-601.
Johansson, O, and Redmayne, M (2016). Exacerbation of demyelinating syndrome after exposure to wireless modem with public hotspot. Electromagn Biol Med. 35, 393-397.
Kazemi, E, Mortazavi, SMJ, Ali-Ghanbari, A, Sharifzadeh, S, Ranjbaran, R, Mostafavi-Pour, Z, Zal, F, and Haghani, M (2015). Effect of 900 MHz electromagnetic radiation on the induction of ROS in human peripheral blood mononuclear cells. J Biomed Phys Eng. 5, 105-114.
Kim, J-Y, Hong, S-Y, Lee, Y-M, Yu, S-A, Koh, WS, Hong, J-R, Son, T, Chang, S-K, and Lee, M (2008). In vitro assessment of clastogenicity of mobile-phone radiation (835 MHz) using the alkaline comet assay and chromosomal aberration test.. Environ. Toxicol.. 23, 319-327.
Kim, JH, Huh, YH, and Kim, HR (2016). Induction of autophagy in the striatum and hypothalamus of mice after 835 MHz radiofrequency exposure. PLoS ONE. 11, e0153308.
Kim, JH, Kim, H-J, Yu, D-H, Kweon, H-S, Huh, YH, and Kim, HR (2017a). Changes in numbers and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequency-electromagnetic field. PLoS ONE. 12, e0186416.
Kim, JH, Sohn, UD, Kim, H-G, and Kim, HR (2018a). Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus. Korean J Physiol Pharmacol. 22, 277-289.
Kim, JH, Yu, DH, Huh, YH, Lee, EH, Kim, HG, and Kim, HR (2017b). Long-term exposure to 835 MHz RF-EMF induces hyperactivity, autophagy and demyelination in the cortical neurons of mice. Sci Rep. 7, 41129.
Kim, JH, Yu, DH, Kim, HJ, Huh, YH, Cho, SW, Lee, JK, Kim, HG, and Kim, HR (2018b). Exposure to 835 MHz radiofrequency electromagnetic field induces autophagy in hippocampus but not in brain stem of mice.. Toxicol. Ind. Health. 34, 23-35.
Kleinerman, RA, Linet, MS, Hatch, EE, Wacholder, S, Tarone, RE, Severson, RK, Kaune, WT, Friedman, DR, Haines, CM, Muirhead, CR, Boice, JDJ, and Robison, LL (1997). Magnetic field exposure assessment in a case-control study of childhood leukemia. Epidemiology. 8, 575-583.
Kleinlogel, H, Dierks, T, Koenig, T, Lehmann, H, Minder, A, and Berz, R (2008). Effects of weak mobile phone - electromagnetic fields (GSM, UMTS) on event related potentials and cognitive functions. Bioelectromagnetics. 29, 488-497.
Kolodynski, AA, and Kolodynska, VV (1996). Motor and psychological functions of school children living in the area of the Skrunda Radio Location Station in Latvia. Sci Total Environ. 180, 87-93.
Kumlin, T, Iivonen, H, Miettinen, P, Juvonen, A, Van Groen, T, Puranen, L, Pitkaaho, R, Juutilainen, J, and Tanila, H (2007). Mobile phone radiation and the developing brain: behavioral and morphological effects in juvenile rats. Radiat Res. 168, 471-479.
Kuribayashi, M, Wang, J, Fujiwara, O, Doi, Y, Nabae, K, Tamano, S, Ogiso, T, Asamoto, M, and Shirai, T (2005). Lack of effects of 1439 MHz electromagnetic near field exposure on the blood-brain barrier in immature and young rats. Bioelectromagnetics. 26, 578-588.
Kuybulu, AE, Øktem, F, Éiriş, İM, Sutcu, R, Ørmeci, AR, Éömlekçi, S, and Uz, E (2016). Effects of long-term pre- and post-natal exposure to 2.45 GHz wireless devices on developing male rat kidney.. Ren. Fail.. 38, 571-580.
Lagiou, P, Tamimi, R, Lagiou, A, Mucci, L, and Trichopoulos, D (2002). Is epidemiology implicating extremely low frequency electric and magnetic fields in childhood leukemia?. Environ Health Prev Med. 7, 33-39.
Lai, H, Carino, MA, Horita, A, and Guy, AW (1992). Single vs. repeated microwave exposure: effects on benzodiazepine receptors in the brain of the rat. Bioelectromagnetics. 13, 57-66.
Lai, H, Horita, A, and Guy, AW (1994). Microwave irradiation affects radial-arm maze performance in the rat. Bioelectromagnetics. 15, 95-104.
Lai, H, and Singh, NP (2004). Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect. 112, 687-694.
Langer, CE, De Llobet, P, Dalmau, A, Wiart, J, Goedhart, G, Hours, M, Benke, GP, Bouka, E, Bruchim, R, Choi, K-H, Eng, A, Ha, M, Karalexi, M, Kiyohara, K, Kojimahara, N, Krewski, D, Kromhout, H, Lacour, BT, Mannetje, A, Maule, M, Migliore, E, Mohipp, C, Momoli, F, Petridou, E, Radon, K, Remen, T, Sadetzki, S, Sim, MR, Weinmann, T, Vermeulen, R, Cardis, E, and Vrijheid, M (2017). Patterns of cellular phone use among young people in 12 countries: Implications for RF exposure. Environ Int. 107, 65-74.
Lee, S, Johnson, D, Dunbar, K, Dong, H, Ge, X, Kim, YC, Wing, C, Jayathilaka, N, Emmanuel, N, Zhou, CQ, Gerber, HL, Tseng, CC, and Wang, SM (2005). 2.45 GHz radiofrequency fields alter gene expression in cultured human cells.. FEBS Lett.. 579, 4829-4836.
Leitgeb, N (2011). Comparative health risk assessment of electromagnetic fields. Wien Med Wochenschr. 161, 251-262.
Ma, Q, Chen, C, Deng, P, Zhu, G, Lin, M, Zhang, L, Xu, S, He, M, Lu, Y, Duan, W, Pi, H, Cao, Z, Pei, L, Li, M, Liu, C, Zhang, Y, Zhong, M, Zhou, Z, and Yu, Z (2016). Extremely low-frequency electromagnetic fields promote in vitro neuronal differentiation and neurite outgrowth of embryonic neural stem cells via up-regulating TRPC1. PLoS ONE. 11, e0150923.
Magras, IN, and Xenos, TD (1997). RF radiation-induced changes in the prenatal development of mice. Bioelectromagnetics. 18, 455-461.
Mann, K, Wagner, P, Brunn, G, Hassan, F, Hiemke, C, and Roschke, J (1998). Effects of pulsed high-frequency electromagnetic fields on the neuroendocrine system. Neuroendocrinology. 67, 139-144.
Marchesi, N, Osera, C, Fassina, L, Amadio, M, Angeletti, F, Morini, M, Magenes, G, Venturini, L, Biggiogera, M, Ricevuti, G, Govoni, S, Caorsi, S, Pascale, A, and Comincini, S (2014). Autophagy is modulated in human neuroblastoma cells through direct exposition to low frequency electromagnetic fields. J Cell Physiol. 229, 1776-1786.
Mashevich, M, Folkman, D, Kesar, A, Barbul, A, Korenstein, R, Jerby, E, and Avivi, L (2003). Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics. 24, 82-90.
Medina-Fernandez, FJ, Escribano, BM, Agüera, E, Aguilar-Luque, M, Feijoo, M, Luque, E, Garcia-Maceira, FI, Pascual-Leone, A, Drucker-Colin, R, and Tunez, I (2017). Effects of transcranial magnetic stimulation on oxidative stress in experimental autoimmune encephalomyelitis. Free Radic Res. 51, 460-469.
Micheau, J, and Van Marrewijk, B (1999). Stimulation of 5-HT1A receptors by systemic or medial septum injection induces anxiogenic-like effects and facilitates acquisition of a spatial discrimination task in mice.. Prog. Neuropsychopharmacol. Biol. Psychiatry. 23, 1113-1133.
Millan, MJ (2003). The neurobiology and control of anxious states. Prog Neurobiol. 70, 83-244.
Morgan, LL, Miller, AB, Sasco, A, and Davis, DL (2015). Mobile phone radiation causes brain tumors and should be classified as a probable human carcinogen (2A) (review). Int J Oncol. 46, 1865-1871.
Morris, RG, Garrud, P, Rawlins, JN, and O’keefe, J (1982). Place navigation impaired in rats with hippocampal lesions. Nature. 297, 681-683.
Mortazavi, SA, Tavakkoli-Golpayegani, A, Haghani, M, and Mortazavi, SM (2014). Looking at the other side of the coin: the search for possible biopositive cognitive effects of the exposure to 900 MHz GSM mobile phone radiofrequency radiation. J Environ Health Sci Eng. 12, 75.
Moser, EI, Krobert, KA, Moser, MB, and Morris, RG (1998). Impaired spatial learning after saturation of long-term potentiation. Science. 281, 2038-2042.
Moulder, JE, Foster, KR, Erdreich, LS, and Mcnamee, JP (2005). Mobile phones, mobile phone base stations and cancer: a review. Int J Radiat Biol. 81, 189-203.
Myung, SK, Ju, W, Mcdonnell, DD, Lee, YJ, Kazinets, G, Cheng, CT, and Moskowitz, JM (2009). Mobile phone use and risk of tumors: a meta-analysis. J Clin Oncol. 27, 5565-5572.
Nanou, E, and Catterall, WA (2018). Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron. 98, 466-481.
Neher, E, and Sakaba, T (2008). Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron. 59, 861-872.
Nittby, H, Brun, A, Eberhardt, J, Malmgren, L, Persson, BR, and Salford, LG (2009). Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology. 16, 103-112.
Nixon, RA (2013). The role of autophagy in neurodegenerative disease. Nat Med. 19, 983-997.
Ohtani, S, Ushiyama, A, Maeda, M, Ogasawara, Y, Wang, J, Kunugita, N, and Ishii, K (2015). The effects of radio-frequency electromagnetic fields on T cell function during development. J Radiat Res. 56, 467-474.
Oscar, KJ, and Hawkins, TD (1977). Microwave alteration of the blood-brain barrier system of rats. Brain Res. 126, 281-293.
Pall, ML (2013). Electromagnetic fields act via activation of voltagegated calcium channels to produce beneficial or adverse effects. J Cell Mol Med. 17, 958-965.
Pall, ML (2015). Scientific evidence contradicts findings and assumptions of Canadian Safety Panel 6: microwaves act through voltagegated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequency electromagnetic field action.. Rev. Environ. Health. 30, 99-116.
Pchitskaya, E, Popugaeva, E, and Bezprozvanny, I (2018). Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium. 70, 87-94.
Phillips, JL, Singh, NP, and Lai, H (2009). Electromagnetic fields and DNA damage. Pathophysiology. 16, 79-88.
Preece, AW, Iwi, G, Davies-Smith, A, Wesnes, K, Butler, S, Lim, E, and Varey, A (1999). Effect of a 915-MHz simulated mobile phone signal on cognitive function in man. Int J Radiat Biol. 75, 447-456.
Ray, S, and Behari, J (1990). Physiological changes in rats after exposure to low levels of microwaves. Radiat Res. 123, 199-202.
Redmayne, M, and Johansson, O (2014). Could myelin damage from radiofrequency electromagnetic field exposure help explain the functional impairment electrohypersensitivity? A review of the evidence. J Toxicol Environ Health B Crit Rev. 17, 247-258.
Repacholi, MH, Lerchl, A, Roosli, M, Sienkiewicz, Z, Auvinen, A, Breckenkamp, J, D’inzeo, G, Elliott, P, Frei, P, Heinrich, S, Lagroye, I, Lahkola, A, Mccormick, DL, Thomas, S, and Vecchia, P (2012). Systematic review of wireless phone use and brain cancer and other head tumors. Bioelectromagnetics. 33, 187-206.
Ruediger, HW (2009). Genotoxic effects of radiofrequency electromagnetic fields. Pathophysiology. 16, 89-102.
Salford, L, Nittby, H, Brun, A, Grafstrom, G, Malmgren, L, Sommarin, M, Eberhardt, J, Widegren, B, and Persson, B (2008). The mammalian brain in the electromagnetic fields designed by man with special reference to blood-brain barrier function, neuronal damage and possible physical mechanisms. Prog Theor Phys Supp.. 173, 283-309.
Salford, LG, Brun, A, Sturesson, K, Eberhardt, JL, and Persson, BR (1994). Permeability of the blood-brain barrier induced by 915 MHz electromagnetic radiation, continuous wave and modulated at 8, 16, 50, and 200 Hz. Microsc Res Tech. 27, 535-542.
Salford, LG, Brun, AE, Eberhardt, JL, Malmgren, L, and Persson, BR (2003). Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect. 111, 881-883.
Santini, R, Santini, P, Danze, JM, Le Ruz, P, and Seigne, M (2002). Study of the health of people living in the vicinity of mobile phone base stations: I. Influences of distance and sex.. Pathol. Biol.. 50, 369-373.
Schmid, MR, Loughran, SP, Regel, SJ, Murbach, M, Bratic Grunauer, A, Rusterholz, T, Bersagliere, A, Kuster, N, and Achermann, P (2012). Sleep EEG alterations: effects of different pulse-modulated radio frequency electromagnetic fields. J Sleep Res. 21, 50-58.
Sherafat, MA, Heibatollahi, M, Mongabadi, S, Moradi, F, Javan, M, and Ahmadiani, A (2012). Electromagnetic field stimulation potentiates endogenous myelin repair by recruiting subventricular neural stem cells in an experimental model of white matter demyelination. J Mol Neurosci. 48, 144-153.
Son, Y, Jeong, YJ, Kwon, JH, Choi, HD, Pack, JK, Kim, N, Lee, YS, and Lee, HJ (2016). 1950 MHz radiofrequency electromagnetic fields do not aggravate memory deficits in 5xFAD mice. Bioelectromagnetics. 37, 391-399.
Son, Y, Kim, JS, Jeong, YJ, Jeong, YK, Kwon, JH, Choi, H-D, Pack, J-K, Kim, N, Lee, Y-S, and Lee, H-J (2018). Long-term RF exposure on behavior and cerebral glucose metabolism in 5xFAD mice. Neurosci Lett. 666, 64-69.
Stam, R (2010). Electromagnetic fields and the blood-brain barrier. Brain Res Rev. 65, 80-97.
Stewart, A, Rao, JN, Middleton, JD, Pearmain, P, and Evans, T (2012). Mobile telecommunications and health: report of an investigation into an alleged cancer cluster in Sandwell, West Midlands. . Perspect Public Health. 132, 299-304.
Sun, Z-C, Ge, J-L, Guo, B, Guo, J, Hao, M, Wu, Y-C, Lin, Y-A, La, T, Yao, P-T, Mei, Y-A, Feng, Y, and Xue, L (2016). Extremely low frequency electromagnetic fields facilitate vesicle endocytosis by increasing presynaptic calcium channel expression at a central synapse. Sci Rep. 6, 21774.
Sutton, CH, and Carroll, FB (1979). Effects of microwave-induced hyperthermia on the blood-brain barrier of the rat. Radio Sci. 14, 329-334.
Swerdlow, AJ, Feychting, M, Green, AC, Leeka Kheifets, LK, and Savitz, DA (2011). Mobile phones, brain tumors, and the interphone study: where are we now?. Environ Health Perspect. 119, 1534-1538.
Tattersall, JEH, Scott, IR, Wood, SJ, Nettell, JJ, Bevir, MK, Wang, Z, Somasiri, NP, and Chen, X (2001). Effects of low intensity radiofrequency electromagnetic fields on electrical activity in rat hippocampal slices. Brain Res. 904, 43-53.
Türedi, S, Kerimoğlu, G, Mercantepe, T, and Odacı, E (2017). Biochemical and pathological changes in the male rat kidney and bladder following exposure to continuous 900-MHz electromagnetic field on postnatal days 22–59. Int J Radiat Biol. 93, 990-999.
Volkow, ND, Tomasi, D, Wang, GJ, Vaska, P, Fowler, JS, Telang, F, Alexoff, D, Logan, J, and Wong, C (2011). Effects of cell phone radiofrequency signal exposure on brain glucose metabolism. JAMA. 305, 808-813.
Wagner, P, Roschke, J, Mann, K, Hiller, W, and Frank, C (1998). Human sleep under the influence of pulsed radiofrequency electromagnetic fields: a polysomnographic study using standardized conditions. Bioelectromagnetics. 19, 199-202.
Wainwright, P (2000). Thermal effects of radiation from cellular telephones. Phys Med Biol. 45, 2363-2372.
Wang, B, and Lai, H (2000). Acute exposure to pulsed 2450-MHz microwaves affects water-maze performance of rats. Bioelectromagnetics. 21, 52-56.
Wyde, ME, Horn, TL, Capstick, MH, Ladbury, JM, Koepke, G, Wilson, PF, Kissling, GE, Stout, MD, Kuster, N, Melnick, RL, Gauger, J, Bucher, JR, and Mccormick, DL (2018). Effect of cell phone radiofrequency radiation on body temperature in rodents: Pilot studies of the National Toxicology Program’s reverberation chamber exposure system. Bioelectromagnetics. 39, 190-199.
Xu, S, Ning, W, Xu, Z, Zhou, S, Chiang, H, and Luo, J (2006). Chronic exposure to GSM 1800-MHz microwaves reduces excitatory synaptic activity in cultured hippocampal neurons. Neurosci Lett. 398, 253-257.
Xu, S, Zhou, Z, Zhang, L, Yu, Z, Zhang, W, Wang, Y, Wang, X, Li, M, Chen, Y, Chen, C, He, M, Zhang, G, and Zhong, M (2010). Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons. Brain Res. 1311, 189-196.
Yamaguchi, H, Tsurita, G, Ueno, S, Watanabe, S, Wake, K, Taki, M, and Nagawa, H (2003). 1439 MHz pulsed TDMA fields affect performance of rats in a T-maze task only when body temperature is elevated. Bioelectromagnetics. 24, 223-230.
Zhao, TY, Zou, SP, and Knapp, PE (2007). Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci Lett. 412, 34-38.