Akopian, AN, Ruparel, NB, Jeske, NA, and Hargreaves, KM (2007). Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization.. J Physiol. 583, 175-193.
Allen, AC, Gammon, CM, Ousley, AH, McCarthy, KD, and Morell, P (1992). Bradykinin stimulates arachidonic acid release through the sequential actions of an sn-1 diacylglycerol lipase and a monoacylglycerol lipase.. J Neurochem. 58, 1130-1139.
Amaya, F, Wang, H, Costigan, M, Allchorne, AJ, Hatcher, JP, Egerton, J, Stean, T, Morisset, V, Grose, D, Gunthorpe, MJ, Chessell, IP, Tate, S, Green, PJ, and Woolf, CJ (2006). The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity.. J Neurosci. 26, 12852-12860.
Andersson, DA, Gentry, C, Moss, S, and Bevan, S (2008). Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress.. J Neurosci. 28, 2485-2494.
Armstrong, D, Jepson, J, Keele, C, and Stewart, J (1957). Pain-producing substance in human inflammatory exudates and plasma.. J Physiol. 135, 350-370.
Babenko, V, Graven-Nielsen, T, Svensson, P, Drewes, AM, Jensen, TS, and Arendt-Nielsen, L (1999). Experimental human muscle pain induced by intramuscular injections of bradykinin, serotonin, and substance P.. Eur J Pain. 3, 93-102.
Backonja, M, Wallace, MS, Blonsky, ER, Cutler, BJ, Malan, P, Rauck, R, and Tobias, J (2008). NGX-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: a randomised, double-blind study.. Lancet Neurol. 7, 1106-1112.
Bae, SW, Kim, HS, Cha, YN, Park, YS, Jo, SA, and Jo, I (2003). Rapid increase in endothelial nitric oxide production by bradykinin is mediated by protein kinase A signaling pathway.. Biochem Biophys Res Commun. 306, 981-987.
Bandell, M, Story, GM, Hwang, SW, Viswanath, V, Eid, SR, Petrus, MJ, Earley, TJ, and Patapoutian, A (2004). Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin.. Neuron. 41, 849-857.
Bang, S, and Hwang, SW (2009). Polymodal ligand sensitivity of TRPA1 and its modes of interactions.. J Gen Physiol. 133, 257-262.
Barber, LA, and Vasko, MR (1996). Activation of protein kinase C augments peptide release from rat sensory neurons.. J Neurochem. 67, 72-80.
Bautista, DM, Jordt, S-E, Nikai, T, Tsuruda, PR, Read, AJ, Poblete, J, Yamoah, EN, Basbaum, AI, and Julius, D (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents.. Cell. 124, 1269-1282.
Beck, PW, and Handwerker, HO (1974). Bradykinin and serotonin effects on various types of cutaneous nerve fibres.. Pflugers Arch. 347, 209-222.
Bhave, G, Hu, H-J, Glauner, KS, Zhu, W, Wang, H, Brasier, D, Oxford, GS, and Gereau, RW (2003). Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1).. Proc Natl Acad Sci USA. 100, 12480-12485.
Brierley, S, Jones, R, Xu, L, Gebhart, G, and Blackshaw, L (2005). Activation of splanchnic and pelvic colonic afferents by bradykinin in mice.. Neurogastroenterol Motil. 17, 854-862.
Brierley, SM, Hughes, PA, Page, AJ, Kwan, KY, Martin, CM, O’Donnell, TA, Cooper, NJ, Harrington, AM, Adam, B, and Liebregts, T (2009). The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli.. Gastroenterology. 137, 2084-2095.e3.
Burch, RM, and Axelrod, J (1987). Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2.. Proc Natl Acad Sci USA. 84, 6374-6378.
Burgess, GM, Mullaney, I, McNeill, M, Dunn, PM, and Rang, HP (1989). Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture.. J Neurosci. 9, 3314-3325.
Camprubi-Robles, M, Planells-Cases, R, and Ferrer-Montiel, A (2009). Differential contribution of SNARE-dependent exocytosis to inflammatory potentiation of TRPV1 in nociceptors.. FASEB J. 23, 3722-3733.
Carr, MJ, Kollarik, M, Meeker, SN, and Undem, BJ (2003). A role for TRPV1 in bradykinin-induced excitation of vagal airway afferent nerve terminals.. J Pharmacol Exp Ther. 304, 1275-1279.
Cavanaugh, DJ, Lee, H, Lo, L, Shields, SD, Zylka, MJ, Basbaum, AI, and Anderson, DJ (2009). Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli.. Proc Natl Acad Sci USA. 106, 9075-9080.
Cesare, P, Dekker, LV, Sardini, A, Parker, PJ, and McNaughton, PA (1999). Specific involvement of PKC-ε in sensitization of the neuronal response to painful heat.. Neuron. 23, 617-624.
Cesare, P, and McNaughton, P (1996). A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin.. Proc Natl Acad Sci USA. 93, 15435-15439.
Chahl, LA, and Iggo, A (1977). The effects of bradykinin and prostaglandin E1 on rat cutaneous afferent nerve activity.. Br J Pharmacol. 59, 343-347.
Choi, SI, Yoo, S, Lim, JY, and Hwang, SW (2014). Are sensory TRP channels biological alarms for lipid peroxidation?. Int J Mol Sci. 15, 16430-16457.
Chuang, H-h, Prescott, ED, Kong, H, Shields, S, Jordt, S-E, Basbaum, AI, Chao, MV, and Julius, D (2001). Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns (4, 5) P2-mediated inhibition.. Nature. 411, 957-962.
Cordoba-Rodriguez, R, Moore, KA, Kao, JP, and Weinreich, D (1999). Calcium regulation of a slow post-spike hyperpolarization in vagal afferent neurons.. Proc Natl Acad Sci USA. 96, 7650-7657.
Costa, R, Bicca, MA, Manjavachi, MN, Segat, GC, Dias, FC, Fernandes, ES, and Calixto, JB (2018). Kinin receptors sensitize TRPV4 channel and induce mechanical hyperalgesia: relevance to paclitaxel-induced peripheral neuropathy in mice.. Mol Neurobiol. 55, 2150-2161.
Costello, A, and Hargreaves, K (1989). Suppression of carrageenan-induced hyperalgesia, hyperthermia and edema by a bradykinin antagonist.. Eur J Pharmacol. 171, 259-263.
Crandall, M, Kwash, J, Yu, W, and White, G (2002). Activation of protein kinase C sensitizes human VR1 to capsaicin and to moderate decreases in pH at physiological temperatures in Xenopus oocytes.. Pain. 98, 109-117.
Cunha, TM, Verri, WA, Fukada, SY, Guerrero, AT, Santodomingo-Garzón, T, Poole, S, Parada, CA, Ferreira, SH, and Cunha, FQ (2007). TNF-α and IL-1β mediate inflammatory hypernociception in mice triggered by B 1 but not B 2 kinin receptor.. Eur J Pharmacol. 573, 221-229.
Dai, Y, Wang, S, Tominaga, M, Yamamoto, S, Fukuoka, T, Higashi, T, Kobayashi, K, Obata, K, Yamanaka, H, and Noguchi, K (2007). Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain.. J Clin Invest. 117, 1979-1987.
De Campos, R, Henriques, M, and Calixto, J (1998). Systemic treatment with Mycobacterium bovis bacillus calmette-guerin (BCG) potentiates kinin B 1 receptor agonist-induced nociception and oedema formation in the formalin test in mice.. Neuropeptides. 32, 393-403.
de Oliveira Fusaro, MCG, Pelegrini-da-Silva, A, Araldi, D, Parada, CA, and Tambeli, CH (2010). P2X3 and P2X2/3 receptors mediate mechanical hyperalgesia induced by bradykinin, but not by proinflammatory cytokines, PGE 2 or dopamine.. Eur J Pharmacol. 649, 177-182.
Delmas, P, and Brown, DA (2005). Pathways modulating neural KCNQ/M (Kv7) potassium channels.. Nat Rev Neurosci. 6, 850-862.
Dickenson, A, and Dray, A (1991). Selective antagonism of capsaicin by capsazepine: evidence for a spinal receptor site in capsaicin-induced antinociception.. Br J Pharmacol. 104, 1045-1049.
Dray, A, Bettaney, J, Forster, P, and Perkins, M (1988). Bradykinin-induced stimulation of afferent fibres is mediated through protein kinase C.. Neurosci Lett. 91, 301-307.
Dray, A, Forbes, C, and Burgess, G (1990). Ruthenium red blocks the capsaicin-induced increase in intracellular calcium and activation of membrane currents in sensory neurones as well as the activation of peripheral nociceptors in vitro. Neurosci Lett. 110, 52-59.
Dray, A, Patel, I, Perkins, M, and Rueff, A (1992). Bradykinin-induced activation of nociceptors: receptor and mechanistic studies on the neonatal rat spinal cord-tail preparation in vitro. Br J Pharmacol. 107, 1129-1134.
Dubin, AE, Schmidt, M, Mathur, J, Petrus, MJ, Xiao, B, Coste, B, and Patapoutian, A (2012). Inflammatory signals enhance piezo2-mediated mechanosensitive currents.. Cell Rep. 2, 511-517.
Ferreira, J, Beirith, A, Mori, MA, Araújo, RC, Bader, M, Pesquero, JB, and Calixto, JB (2005). Reduced nerve injury-induced neuropathic pain in kinin B1 receptor knock-out mice.. J Neurosci. 25, 2405-2412.
Ferreira, J, Campos, MM, Pesquero, JB, Araújo, RC, Bader, M, and Calixto, JB (2001). Evidence for the participation of kinins in Freund’s adjuvant-induced inflammatory and nociceptive responses in kinin B 1 and B 2 receptor knockout mice.. Neuropharmacology. 41, 1006-1012.
Ferreira, J, Da Silva, GL, and Calixto, JB (2004). Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice.. Br J Pharmacol. 141, 787-794.
Ferreira, S, Lorenzetti, B, Cunha, F, and Poole, S (1993a). Bradykinin release of TNF-α plays a key role in the development of inflammatory hyperalgesia.. Agents Actions. 38, C7-C9.
Ferreira, S, Lorenzetti, B, and Poole, S (1993b). Bradykinin initiates cytokine-mediated inflammatory hyperalgesia.. Br J Pharmacol. 110, 1227-1231.
Fischer, MJ, Balasuriya, D, Jeggle, P, Goetze, TA, McNaughton, PA, Reeh, PW, and Edwardson, JM (2014). Direct evidence for functional TRPV1/TRPA1 heteromers.. Pflugers Arch. 466, 2229-2241.
Fischer, MJ, and McNaughton, PA (2014). How anchoring proteins shape pain.. Pharmacol Ther. 143, 316-322.
Fox, A, Barnes, P, Urban, L, and Dray, A (1993). An in vitro study of the properties of single vagal afferents innervating guinea-pig airways.. J Physiol. 469, 21-35.
Fox, AJ, Lalloo, UG, Belvisi, MG, Bernareggi, M, Chung, KF, and Barnes, PJ (1996). Bradykinin–evoked sensitization of airway sensory nerves: A mechanism for ACE–inhibitor cough.. Nat Med. 2, 814-817.
Franco-Cereceda, A (1989). Prostaglandins and CGRP release from cardiac sensory nerves.. Naunyn Schmiedebergs Arch Pharmacol. 340, 180-184.
Füredi, R, Bölcskei, K, Szolcsányi, J, and Pethő, G (2010). Comparison of the peripheral mediator background of heat injury-and plantar incision-induced drop of the noxious heat threshold in the rat.. Life Sci. 86, 244-250.
Funk, K, Woitecki, A, Franjic-Würtz, C, Gensch, T, Möhrlen, F, and Frings, S (2008). Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons.. Mol Pain. 4, 32.
Gabra, BH, Benrezzak, O, Pheng, L-H, Duta, D, Daull, P, Sirois, P, Nantel, F, and Battistini, B (2005a). Inhibition of type 1 diabetic hyperalgesia in streptozotocin-induced Wistar versus spontaneous gene-prone BB/Worchester rats: efficacy of a selective bradykinin B1 receptor antagonist.. J Neuropathol Exp Neurol. 64, 782-789.
Gabra, BH, Merino, VF, Bader, M, Pesquero, JB, and Sirois, P (2005b). Absence of diabetic hyperalgesia in bradykinin B1 receptor-knockout mice.. Regul Pept. 127, 245-248.
Gabra, BH, and Sirois, P (2002). Role of bradykinin B 1 receptors in diabetes-induced hyperalgesia in streptozotocin-treated mice.. Eur J Pharmacol. 457, 115-124.
Gabra, BH, and Sirois, P (2003a). Beneficial effect of chronic treatment with the selective bradykinin B 1 receptor antagonists, R-715 and R-954, in attenuating streptozotocin-diabetic thermal hyperalgesia in mice.. Peptides. 24, 1131-1139.
Gabra, BH, and Sirois, P (2003b). Kinin B 1 receptor antagonists inhibit diabetes-induced hyperalgesia in mice.. Neuropeptides. 37, 36-44.
Gammon, CM, Allen, AC, and Morell, P (1989). Bradykinin stimulates phosphoinositide hydrolysis and mobilization of arachidonic acid in dorsal root ganglion neurons.. J Neurochem. 53, 95-101.
Gao, Y, Cao, E, Julius, D, and Cheng, Y (2016). TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action.. Nature. 534, 347-351.
Gibson, HE, Edwards, JG, Page, RS, Van Hook, MJ, and Kauer, JA (2008). TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons.. Neuron. 57, 746-759.
Gougat, J, Ferrari, B, Sarran, L, Planchenault, C, Poncelet, M, Maruani, J, Alonso, R, Cudennec, A, Croci, T, and Guagnini, F (2004). SSR240612 [(2R)-2-[((3R)-3-(1, 3-benzodioxol-5-yl)-3-{[(6-methoxy-2-naphthyl) sulfonyl] amino} propanoyl) amino]-3-(4-{[2R, 6S)-2, 6-dimethylpiperidinyl] methyl} phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization.. J Pharmacol Exp Ther. 309, 661-669.
Gregus, AM, Doolen, S, Dumlao, DS, Buczynski, MW, Takasusuki, T, Fitzsimmons, BL, Hua, X-Y, Taylor, BK, Dennis, EA, and Yaksh, TL (2012). Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors.. Proc Natl Acad Sci USA. 109, 6721-6726.
Griesbacher, T, Amann, R, Sametz, W, Diethart, S, and Juan, H (1998). The nonpeptide B2 receptor antagonist FR173657: inhibition of effects of bradykinin related to its role in nociception.. Br J Pharmacol. 124, 1328-1334.
Guo, Z-L, Fu, L-W, Symons, JD, and Longhurst, JC (1998). Signal transduction in activation of ischemically sensitive abdominal visceral afferents: role of PKC.. Am J Physiol. 275, H1024-H1031.
Guo, Z-L, Symons, JD, and Longhurst, JC (1999). Activation of visceral afferents by bradykinin and ischemia: independent roles of PKC and prostaglandins.. Am J Physiol. 276, H1884-H1891.
Haake, B, Liang, Y, and Reeh, P (1996). Bradykinin effects and receptor subtypes in rat cutaneous nociceptors, in vitro. Pflugers Arch. 431, R15.
Hinman, A, Chuang, H-h, Bautista, DM, and Julius, D (2006). TRP channel activation by reversible covalent modification.. Proc Natl Acad Sci USA. 103, 19564-19568.
Hong, Y, and Abbott, F (1994). Behavioural effects of intraplantar injection of inflammatory mediators in the rat.. Neuroscience. 63, 827-836.
Hwang, SW, Cho, H, Kwak, J, Lee, S-Y, Kang, C-J, Jung, J, Cho, S, Min, KH, Suh, Y-G, and Kim, D (2000). Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances.. Proc Natl Acad Sci USA. 97, 6155-6160.
Ikeda, Y, Ueno, A, Naraba, H, and Oh-ishi, S (2001a). Evidence for bradykinin mediation of carrageenin-induced inflammatory pain: a study using kininogen-deficient Brown Norway Katholiek rats.. Biochem Pharmacol. 61, 911-914.
Ikeda, Y, Ueno, A, Naraba, H, and Oh-ishi, S (2001b). Involvement of vanilloid receptor VR1 and prostanoids in the acid-induced writhing responses of mice.. Life Sci. 69, 2911-2919.
Inoue, A, Iwasa, M, Nishikura, Y, Ogawa, S, Nakasuka, A, and Nakata, Y (2006). The long-term exposure of rat cultured dorsal root ganglion cells to bradykinin induced the release of prostaglandin E2 by the activation of cyclooxygenase-2.. Neurosci Lett. 401, 242-247.
Jackson, JG, Usachev, YM, and Thayer, SA (2007). Bradykinin-induced nuclear factor of activated T-cells-dependent transcription in rat dorsal root ganglion neurons.. Mol Pharmacol. 72, 303-310.
Jenkins, DW, Sellers, LA, Feniuk, W, and Humphrey, PP (2003). Characterization of bradykinin-induced prostaglandin E2 release from cultured rat trigeminal ganglion neurones.. Eur J Pharmacol. 469, 29-36.
Jin, X, Shah, S, Liu, Y, Zhang, H, Lees, M, Fu, Z, Lippiat, JD, Beech, DJ, Sivaprasadarao, A, and Baldwin, SA (2013). Activation of the Cl− channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP3 receptor.. Sci Signal. 6.
Juan, H (1977). Mechanism of action of bradykinin-induced release of prostaglandin E.. Naunyn Schmiedebergs Arch Pharmacol. 300, 77-85.
Juan, H, and Lembeck, F (1974). Action of peptides and other algesic agents on paravascular pain receptors of the isolated perfused rabbit ear.. Naunyn Schmiedebergs Arch Pharmacol. 283, 151-164.
Kajekar, R, Proud, D, Myers, AC, Meeker, SN, and Undem, BJ (1999). Characterization of vagal afferent subtypes stimulated by bradykinin in guinea pig trachea.. J Pharmacol Exp Ther. 289, 682-687.
Kano, M, Kawakami, T, Hikawa, N, Hori, H, Takenaka, T, and Gotoh, H (1994). Bradykinin-responsive cells of dorsal root ganglia in culture: cell size, firing, cytosolic calcium, and substance P.. Cell Mol Neurobiol. 14, 49-57.
Karashima, Y, Prenen, J, Meseguer, V, Owsianik, G, Voets, T, and Nilius, B (2008). Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators.. Pflugers Arch. 457, 77.
Katanosaka, K, Banik, RK, Giron, R, Higashi, T, Tominaga, M, and Mizumura, K (2008). Contribution of TRPV1 to the bradykinin-evoked nociceptive behavior and excitation of cutaneous sensory neurons.. Neurosci Res. 62, 168-175.
Khan, AA, Raja, SN, Manning, DC, Campbell, JN, and Meyer, RA (1992). The effects of bradykinin and sequence-related analogs on the response properties of cutaneous nociceptors in monkeys.. Somatosens Mot Res. 9, 97-106.
Khasar, SG, Green, PG, and Levine, JD (1993). Comparison of intradermal and subcutaneous hyperalgesic effects of inflammatory mediators in the rat.. Neurosci Lett. 153, 215-218.
Kim, D, and Cavanaugh, EJ (2007). Requirement of a soluble intracellular factor for activation of transient receptor potential A1 by pungent chemicals: role of inorganic polyphosphates.. J Neurosci. 27, 6500-6509.
Kim, D, Cavanaugh, EJ, and Simkin, D (2008). Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4, 5-bisphosphate.. Am J Physiol Cell Physiol. 295, C92-C99.
Kindgen-Milles, D, Klement, W, and Arndt, J (1994). The nociceptive systems of skin, paravascular tissue and hand veins of humans and their sensitivity to bradykinin.. Neurosci Lett. 181, 39-42.
Kollarik, M, and Undem, B (2004). Activation of bronchopulmonary vagal afferent nerves with bradykinin, acid and vanilloid receptor agonists in wild-type and TRPV1−/−mice.. J Physiol. 555, 115-123.
Koltzenburg, M, Kress, M, and Reeh, P (1992). The nociceptor sensitization by bradykinin does not depend on sympathetic neurons.. Neuroscience. 46, 465-473.
Kozaki, Y, Kambe, F, Hayashi, Y, Ohmori, S, Seo, H, Kumazawa, T, and Mizumura, K (2007). Molecular cloning of prostaglandin EP3 receptors from canine sensory ganglia and their facilitatory action on bradykinin-induced mobilization of intracellular calcium.. J Neurochem. 100, 1636-1647.
Kumazawa, T, and Mizumura, K (1976). The polymodal C-fiber receptor in the muscle of the dog.. Brain Res. 101, 589-593.
Kumazawa, T, Mizumura, K, Minagawa, M, and Tsujii, Y (1991). Sensitizing effects of bradykinin on the heat responses of the visceral nociceptor.. J Neurophysiol. 66, 1819-1824.
Kwan, KY, Allchorne, AJ, Vollrath, MA, Christensen, AP, Zhang, D-S, Woolf, CJ, and Corey, DP (2006). TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction.. Neuron. 50, 277-289.
Kwan, KY, Glazer, JM, Corey, DP, Rice, FL, and Stucky, CL (2009). TRPA1 modulates mechanotransduction in cutaneous sensory neurons.. J Neurosci. 29, 4808-4819.
Labrakakis, C, Tong, CK, Weissman, T, Torsney, C, and MacDermott, AB (2003). Localization and function of ATP and GABAA receptors expressed by nociceptors and other postnatal sensory neurons in rat.. J Physiol. 549, 131-142.
Lang, E, Novak, A, Reeh, P, and Handwerker, H (1990). Chemosensitivity of fine afferents from rat skin in vitro. J Neurophysiol. 63, 887-901.
Lee, MG, MacGlashan, DW, and Undem, BJ (2005a). Role of chloride channels in bradykinin-induced guinea pig airway vagal C-+fibre activation.. J Physiol. 566, 205-212.
Lee, S-Y, Lee, J-H, Kang, KK, Hwang, S-Y, Choi, KD, and Oh, U (2005b). Sensitization of vanilloid receptor involves an increase in the phosphorylated form of the channel.. Arch Pharm Res. 28, 405-412.
Lee, B, Cho, H, Jung, J, Yang, YD, Yang, DJ, and Oh, U (2014). Anoctamin 1 contributes to inflammatory and nerve-injury induced hypersensitivity.. Mol Pain. 10, 5.
Lembeck, F, and Juan, H (1974). Interaction of prostaglandins and indomethacin with algesic substances.. Naunyn Schmiedebergs Arch Pharmacol. 285, 301-313.
Lembeck, F, Popper, H, and Juan, H (1976). Release of prostaglandins by bradykinin as an intrinsic mechanism of its algesic effect.. Naunyn Schmiedebergs Arch Pharmacol. 294, 69-73.
Leonard, PA, Arunkumar, R, and Brennan, TJ (2004). Bradykinin antagonists have no analgesic effect on incisional pain.. Anesth Analg. 99, 1166-1172.
Levy, D, and Zochodne, DW (2000). Increased mRNA expression of the B1 and B2 bradykinin receptors and antinociceptive effects of their antagonists in an animal model of neuropathic pain.. Pain. 86, 265-271.
Liang, YF, Haake, B, and Reeh, PW (2001). Sustained sensitization and recruitment of rat cutaneous nociceptors by bradykinin and a novel theory of its excitatory action.. J Physiol. 532, 229-239.
Liebmann, C, Graness, A, Ludwig, B, Adomeit, A, Boehmer, A, Boehmer, F-D, Nürnberg, B, and Wetzker, R (1996). Dual bradykinin B2 receptor signalling in A431 human epidermoid carcinoma cells: activation of protein kinase C is counteracted by a GS-mediated stimulation of the cyclic AMP pathway.. Biochem J. 313, 109-118.
Liu, B, Linley, JE, Du, X, Zhang, X, Ooi, L, Zhang, H, and Gamper, N (2010). The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca 2+-activated Cl−channels.. J Clin Invest. 120, 1240-1252.
Luiz, AP, Schroeder, SD, Chichorro, JG, Calixto, JB, Zampronio, AR, and Rae, GA (2010). Kinin B 1 and B 2 receptors contribute to orofacial heat hyperalgesia induced by infraorbital nerve constriction injury in mice and rats.. Neuropeptides. 44, 87-92.
Lukacs, V, Thyagarajan, B, Varnai, P, Balla, A, Balla, T, and Rohacs, T (2007). Dual regulation of TRPV1 by phosphoinositides.. J Neurosci. 27, 7070-7080.
Macpherson, LJ, Dubin, AE, Evans, MJ, Marr, F, Schultz, PG, Cravatt, BF, and Patapoutian, A (2007). Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines.. Nature. 445, 541-545.
Manning, DC, Raja, SN, Meyer, RA, and Campbell, JN (1991). Pain and hyperalgesia after intradermal injection of bradykinin in humans.. Clin Pharmacol Ther. 50, 721-729.
Materazzi, S, Nassini, R, Andrè, E, Campi, B, Amadesi, S, Trevisani, M, Bunnett, NW, Patacchini, R, and Geppetti, P (2008). Cox-dependent fatty acid metabolites cause pain through activation of the irritant receptor TRPA1.. Proc Natl Acad Sci USA. 105, 12045-12050.
Mathivanan, S, Devesa, I, Changeux, JP, and Ferrer-Montiel, A (2016). Bradykinin induces TRPV1 exocytotic recruitment in peptidergic nociceptors.. Front Pharmacol. 7, 178.
Maubach, KA, and Grundy, D (1999). The role of prostaglandins in the bradykinin-induced activation of serosal afferents of the rat jejunum in vitro. J Physiol. 515, 277-285.
Mayer, S, Izydorczyk, I, Reeh, PW, and Grubb, BD (2007). Bradykinin-induced nociceptor sensitisation to heat depends on cox-1 and cox-2 in isolated rat skin.. Pain. 130, 14-24.
Mcgehee, DS, and Oxford, GS (1991). Bradykinin modulates the electrophysiology of cultured rat sensory neurons through a pertussis toxin-insensitive G protein.. Mol Cell Neurosci. 2, 21-30.
McGuirk, S, and Dolphin, A (1992). G-protein mediation in nociceptive signal transduction: an investigation into the excitatory action of bradykinin in a subpopulation of cultured rat sensory neurons.. Neuroscience. 49, 117-128.
McGuirk, S, Vallis, Y, Pasternak, C, and Dolphin, A (1989). Bradykinin enhances excitability in cultured rat sensory neurones by a GTP-dependent mechanisms.. Neurosci Lett. 99, 85-89.
Meotti, FC, Figueiredo, CP, Manjavachi, M, and Calixto, JB (2017). The transient receptor potential ankyrin-1 mediates mechanical hyperalgesia induced by the activation of B1 receptor in mice.. Biochem Pharmacol. 125, 75-83.
Meyer, RA, Davis, KD, Raja, SN, and Campbell, JN (1992). Sympathectomy does not abolish bradykinin-induced cutaneous hyperalgesia in man.. Pain. 51, 323-327.
Mizumura, K, Koda, H, and Kumazawa, T (1997). Evidence that protein kinase C activation is involved in the excitatory and facilitatory effects of bradykinin on canine visceral nociceptors in vitro. Neurosci Lett. 237, 29-32.
Mizumura, K, Sato, J, and Kumazawa, T (1987). Effects of prostaglandins and other putative chemical intermediaries on the activity of canine testicular polymodal receptors studied in vitro. Pflugers Arch. 408, 565-572.
Mizumura, K, Sugiura, T, Katanosaka, K, Banik, RK, and Kozaki, Y (2009). Excitation and sensitization of nociceptors by bradykinin: what do we know?. Exp Brain Res. 196, 53-65.
Moriyama, T, Higashi, T, Togashi, K, Iida, T, Segi, E, Sugimoto, Y, Tominaga, T, Narumiya, S, and Tominaga, M (2005). Sensitization of TRPV1 by EP 1 and IP reveals peripheral nociceptive mechanism of prostaglandins.. Mol Pain. 1, 3.
Nakamura, A, Fujita, M, and Shiomi, H (1996). Involvement of endogenous nitric oxide in the mechanism of bradykinin-induced peripheral hyperalgesia.. Br J Pharmacol. 117, 407-412.
Numazaki, M, Tominaga, T, Toyooka, H, and Tominaga, M (2002). Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cε and identification of two target serine residues.. J Biol Chem. 277, 13375-13378.
Oh, EJ, and Weinreich, D (2004). Bradykinin decreases K+ and increases Cl− conductances in vagal afferent neurones of the guinea pig.. J Physiol. 558, 513-526.
Oshita, K, Inoue, A, Tang, H-B, Nakata, Y, Kawamoto, M, and Yuge, O (2005). CB1 cannabinoid receptor stimulation modulates transient receptor potential vanilloid receptor 1 activities in calcium influx and substance P release in cultured rat dorsal root ganglion cells.. J Pharmacol Sci. 97, 377-385.
Pan, H-L, and Chen, S-R (2004). Sensing tissue ischemia.. Circulation. 110, 1826-1831.
Patapoutian, A, Tate, S, and Woolf, CJ (2009). Transient receptor potential channels: targeting pain at the source.. Nat Rev Drug Discov. 8, 55-68.
Peiris, M, Hockley, JR, Reed, DE, Smith, ESJ, Bulmer, DC, and Blackshaw, LA (2017). Peripheral KV7 channels regulate visceral sensory function in mouse and human colon.. Mol Pain. 13.
Perkins, M, and Kelly, D (1993). Induction of bradykinin B1 receptors in vivo in a model of ultra-violet irradiation-induced thermal hyperalgesia in the rat.. Br J Pharmacol. 110, 1441-1444.
Perkins, MN, Campbell, E, and Dray, A (1993). Antinociceptive activity of the bradykinin B1 and B2 receptor antagonists, des-Arg 9,[Leu 8]-BK and HOE 140, in two models of persistent hyperalgesia in the rat.. Pain. 53, 191-197.
Petcu, M, Dias, J, Ongali, B, Thibault, G, Neugebauer, W, and Couture, R (2008). Role of kinin B1 and B2 receptors in a rat model of neuropathic pain.. Int Immunopharmacol. 8, 188-196.
Pethö, G, Derow, A, and Reeh, PW (2001). Bradykinin-induced nociceptor sensitization to heat is mediated by cyclooxygenase products in isolated rat skin.. Eur J Neurosci. 14, 210-218.
Petho, G, and Reeh, PW (2012). Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors.. Physiol Rev. 92, 1699-1775.
Petrus, M, Peier, AM, Bandell, M, Hwang, SW, Huynh, T, Olney, N, Jegla, T, and Patapoutian, A (2007). A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition.. Mol Pain. 3, 40.
Poole, S, Lorenzetti, B, Cunha, J, Cunha, F, and Ferreira, S (1999). Bradykinin B1 and B2 receptors, tumour necrosis factor α and inflammatory hyperalgesia.. Br J Pharmacol. 126, 649-656.
Porreca, F, Vanderah, TW, Guo, W, Barth, M, Dodey, P, Peyrou, V, Luccarini, J, Junien, J-L, and Pruneau, D (2006). Antinociceptive pharmacology of N-[[4-(4, 5-dihydro-1H-imidazol-2-yl) phenyl] methyl]-2-[2-[[(4-methoxy-2, 6-dimethylphenyl) sulfonyl] methylamino] ethoxy]-N-methylacetamide, fumarate (LF22-0542), a novel nonpeptidic bradykinin B1 receptor antagonist.. J Pharmacol Exp Ther. 318, 195-205.
Premkumar, LS, and Ahern, GP (2000). Induction of vanilloid receptor channel activity by protein kinase C.. Nature. 408, 985-990.
Prescott, ED, and Julius, D (2003). A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity.. Science. 300, 1284-1288.
Price, TJ, Cervero, F, Gold, MS, Hammond, DL, and Prescott, SA (2009). Chloride regulation in the pain pathway.. Brain Res Rev. 60, 149-170.
Qin, C, Farber, JP, Miller, KE, and Foreman, RD (2006). Responses of thoracic spinal neurons to activation and desensitization of cardiac TRPV1-containing afferents in rats.. Am J Physiol Regul Integr Comp Physiol. 291, R1700-R1707.
Quintão, NL, Passos, GF, Medeiros, R, Paszcuk, AF, Motta, FL, Pesquero, JB, Campos, MM, and Calixto, JB (2008). Neuropathic pain-like behavior after brachial plexus avulsion in mice: the relevance of kinin B1 and B2 receptors.. J Neurosci. 28, 2856-2863.
Rang, H, and Ritchie, J (1988). Depolarization of nonmyelinated fibers of the rat vagus nerve produced by activation of protein kinase C.. J Neurosci. 8, 2606-2617.
Reeh, PW, and Pethö, G (2000). Nociceptor excitation by thermal sensitization—a hypothesis.. Prog Brain Res. 129, 39-50.
Rong, W, Hillsley, K, Davis, JB, Hicks, G, Winchester, WJ, and Grundy, D (2004). Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice.. J Physiol. 560, 867-881.
Rueff, A, and Dray, A (1993). Sensitization of peripheral afferent fibres in the in vitro neonatal rat spinal cord-tail by bradykinin and prostaglandins.. Neuroscience. 54, 527-535.
Rupniak, NM, Boyce, S, Webb, JK, Williams, AR, Carlson, EJ, Hill, RG, Borkowski, JA, and Hess, JF (1997). Effects of the bradykinin B 1 receptor antagonist des-Arg 9 [Leu 8] bradykinin and genetic disruption of the B2 receptor on nociception in rats and mice.. Pain. 71, 89-97.
Sauer, S, Schäfer, D, Kress, M, and Reeh, P (1998). Stimulated prostaglandin E 2 release from rat skin, in vitro. Life Sci. 62, 2045-2055.
Sauer, SK, Averbeck, B, and Reeh, PW (2000). Denervation and NKI receptor block modulate stimulated CGRP and PGE2 release from rat skin.. Neuroreport. 11, 283-286.
Schuligoi, R, Donnerer, J, and Amann, R (1994). Bradykinin-induced sensitization of afferent neurons in the rat paw.. Neuroscience. 59, 211-215.
Shin, J, Cho, H, Hwang, SW, Jung, J, Shin, CY, Lee, S-Y, Kim, SH, Lee, MG, Choi, YH, and Kim, J (2002). Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia.. Proc Natl Acad Sci USA. 99, 10150-10155.
Song, I, Althoff, C, Hermann, K, Scheel, A, Knetsch, T, Burmester, G, and Backhaus, M (2008). Contrast-enhanced ultrasound in monitoring the efficacy of a bradykinin receptor 2 antagonist in painful knee osteoarthritis compared with MRI.. Ann Rheum Dis. 68, 75-83.
Soukhova-O’Hare, GK, Zhang, JW, Gozal, D, and Yu, J (2006). Bradykinin B 2 receptors mediate pulmonary sympathetic afferents induced reflexes in rabbits.. Life Sci. 78, 1990-1997.
Staruschenko, A, Jeske, NA, and Akopian, AN (2010). Contribution of TRPV1-TRPA1 interaction to the single channel properties of the TRPA1 channel.. J Biol Chem. 285, 15167-15177.
Steranka, LR, Manning, DC, DeHaas, CJ, Ferkany, JW, Borosky, SA, Connor, JR, Vavrek, RJ, Stewart, JM, and Snyder, SH (1988). Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions.. Proc Natl Acad Sci USA. 85, 3245-3249.
Stevens, PA, Pyne, S, Grady, M, and Pyne, NJ (1994). Bradykinin-dependent activation of adenylate cyclase activity and cyclic AMP accumulation in tracheal smooth muscle occurs via protein kinase C-dependent and-independent pathways.. Biochem J. 297, 233-239.
Stucky, C, Abrahams, L, and Seybold, V (1998). Bradykinin increases the proportion of neonatal rat dorsal root ganglion neurons that respond to capsaicin and protons.. Neuroscience. 84, 1257-1265.
Sugiura, T, Tominaga, M, Katsuya, H, and Mizumura, K (2002). Bradykinin lowers the threshold temperature for heat activation of vanilloid receptor 1.. J Neurophysiol. 88, 544-548.
Sung, K-W, Kirby, M, McDonald, MP, Lovinger, DM, and Delpire, E (2000). Abnormal GABAA receptor-mediated currents in dorsal root ganglion neurons isolated from Na−K−2Cl cotransporter null mice.. J Neurosci. 20, 7531-7538.
Taiwo, Y, Heller, P, and Levine, J (1990). Characterization of distinct phospholipases mediating bradykinin and noradrenaline hyperalgesia.. Neuroscience. 39, 523-531.
Taiwo, YO, and Levine, JD (1988). Characterization of the arachidonic acid metabolites mediating bradykinin and noradrenaline hyperalgesia.. Brain Res. 458, 402-406.
Tang, H-B, Inoue, A, Oshita, K, Hirate, K, and Nakata, Y (2005). Zaltoprofen inhibits bradykinin-induced responses by blocking the activation of second messenger signaling cascades in rat dorsal root ganglion cells.. Neuropharmacology. 48, 1035-1042.
Tang, H-B, Inoue, A, Oshita, K, and Nakata, Y (2004). Sensitization of vanilloid receptor 1 induced by bradykinin via the activation of second messenger signaling cascades in rat primary afferent neurons.. Eur J Pharmacol. 498, 37-43.
Tang, HB, Inoue, A, Iwasa, M, Hide, I, and Nakata, Y (2006). Substance P release evoked by capsaicin or potassium from rat cultured dorsal root ganglion neurons is conversely modulated with bradykinin.. J Neurochem. 97, 1412-1418.
Thayer, SA, Perney, TM, and Miller, RJ (1988). Regulation of calcium homeostasis in sensory neurons by bradykinin.. J Neurosci. 8, 4089-4097.
Vasko, M, Campbell, W, and Waite, K (1994). Prostaglandin E2 enhances bradykinin-stimulated release of neuropeptides from rat sensory neurons in culture.. J Neurosci. 14, 4987-4997.
Vaughn, AH, and Gold, MS (2010). Ionic mechanisms underlying inflammatory mediator-induced sensitization of dural afferents.. J Neurosci. 30, 7878-7888.
Vellani, V, Mapplebeck, S, Moriondo, A, Davis, JB, and McNaughton, PA (2001). Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide.. J Physiol. 534, 813-825.
Vellani, V, Zachrisson, O, and McNaughton, PA (2004). Functional bradykinin B1 receptors are expressed in nociceptive neurones and are upregulated by the neurotrophin GDNF.. J Physiol. 560, 391-401.
Voets, T, Droogmans, G, Wissenbach, U, Janssens, A, Flockerzi, V, and Nilius, B (2004). The principle of temperature-dependent gating in cold-and heat-sensitive TRP channels.. Nature. 430, 748-754.
Vyklický, L, Vlachova, V, Vitaskova, Z, Dittert, I, Kabat, M, and Orkand, R (1999). Temperature coefficient of membrane currents induced by noxious heat in sensory neurones in the rat.. J Physiol. 517, 181-192.
Walter, T, Chau, T, and Weichman, B (1989). Effects of analgesics on bradykinin-induced writhing in mice presensitized with PGE 2.. Agents Actions. 27, 375-377.
Wang, MM, Reynaud, D, and Pace-Asciak, CR (1999). In vivo stimulation of 12(S)-lipoxygenase in the rat skin by bradykinin and platelet activating factor: formation of 12(S)-HETE and hepoxilins, and actions on vascular permeability.. Biochim Biophys Acta. 1436, 354-362.
Wang, S, Dai, Y, Fukuoka, T, Yamanaka, H, Kobayashi, K, Obata, K, Cui, X, Tominaga, M, and Noguchi, K (2008). Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain.. Brain. 131, 1241-1251.
Wang, S, Joseph, J, Ro, JY, and Chung, MK (2015). Modality-specific mechanisms of protein kinase C-induced hypersensitivity of TRPV1: S800 is a polymodal sensitization site.. Pain. 156, 931-941.
Weinreich, D, Koschorke, G, Undem, B, and Taylor, G (1995). Prevention of the excitatory actions of bradykinin by inhibition of PGI2 formation in nodose neurones of the guinea-pig.. J Physiol. 483, 735-746.
Weinreich, D, and Wonderlin, W (1987). Inhibition of calcium-dependent spike after-hyperpolarization increases excitability of rabbit visceral sensory neurones.. J Physiol. 394, 415-427.
Weng, H-J, Patel, KN, Jeske, NA, Bierbower, SM, Zou, W, Tiwari, V, Zheng, Q, Tang, Z, Mo, GC, and Wang, Y (2015). Tmem100 is a regulator of TRPA1-TRPV1 complex and contributes to persistent pain.. Neuron. 85, 833-846.
Whalley, E, Clegg, S, Stewart, J, and Vavrek, R (1987). The effect of kinin agonists and antagonists on the pain response of the human blister base.. Naunyn Schmiedebergs Arch Pharmacol. 336, 652-655.
Wu, Z-Z, and Pan, H-L (2007). Role of TRPV1 and intracellular Ca2+ in excitation of cardiac sensory neurons by bradykinin.. Am J Physiol Regul Integr Comp Physiol. 293, R276-R283.
Yamaguchi-Sase, S, Hayashi, I, Okamoto, H, Nara, Y, Matsuzaki, S, Hoka, S, and Majima, M (2003). Amelioration of hyperalgesia by kinin receptor antagonists or kininogen deficiency in chronic constriction nerve injury in rats.. Inflamm Res. 52, 164-169.
Yanaga, F, Hirata, M, and Koga, T (1991). Evidence for coupling of bradykinin receptors to a guanine-nucleotide binding protein to stimulate arachidonate liberation in the osteoblast-like cell line, MC3T3-E1. Biochim Biophys Acta. 1094, 139-146.
Yu, S, and Ouyang, A (2009). TRPA1 in bradykinin-induced mechanical hypersensitivity of vagal C fibers in guinea pig esophagus.. Am J Physiol Gastrointest Liver Physiol. 296, G255-G265.
Zahner, MR, Li, DP, Chen, SR, and Pan, HL (2003). Cardiac vanilloid receptor 1-expressing afferent nerves and their role in the cardiogenic sympathetic reflex in rats.. J Physiol. 551, 515-523.
Zhang, X, Li, L, and McNaughton, PA (2008). Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150.. Neuron. 59, 450-461.
Zylka, MJ, Rice, FL, and Anderson, DJ (2005). Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd.. Neuron. 45, 17-25.