2023 Impact Factor
Metabolomics has been used as a powerful tool for the analysis and quality assessment of the natural product (NP)-derived medicines. It is increasingly being used in the quality control and standardization of NP-derived medicines because they are composed of hundreds of natural compounds. The most common techniques that are used in metabolomics consist of NMR, GC-MS, and LC-MS in combination with multivariate statistical analyses including principal components analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). Currently, the quality control of the NP-derived medicines is usually conducted using HPLC and is specified by one or two indicators. To create a superior quality control framework and avoid adulterated drugs, it is necessary to be able to determine and establish standards based on multiple ingredients using metabolic profiling and fingerprinting. Therefore, the application of various analytical tools in the quality control of NP-derived medicines forms the major part of this review. Veregen® (Medigene AG, Planegg/Martinsried, Germany), which is the first botanical prescription drug approved by US Food and Drug Administration, is reviewed as an example that will hopefully provide future directions and perspectives on metabolomics technologies available for the quality control of NP-derived medicines.
A natural product (NP)-derived medicine is a medicinal product that consists of herbal substances or natural remedies such as plants, algae, or macroscopic fungi. The natural remedies such as
The methods that are currently used for the quality control of NP-derived medicines include morphological assessment, as well as sensory, physicochemical, and biological evaluations (Kunle
Until now, the quality of NP-derived medicines has been determined by the evaluation of one or two kinds of indicators. However, NP-derived drugs usually contain multiple compounds, which indicate that one or two markers would not adequately represent a suitable framework of good quality control. Therefore, quality control involving the evaluation of multiple ingredients using metabolic profiling has increasingly been used to avoid the production of substandard and adulterated NP-derived drugs. The metabolic profiling information can subsequently be applied to the quality assessment of various kinds of medicinal plants and the prediction of various bioactivities of those such as antioxidative, anticancer, and anti-inflammatory, using advanced analytical techniques (such as HPLC, GC, and NMR) and multivariate statistical analyses.
Metabolomics is an emerging “omics” technology that is primarily concerned with the high-throughput quantification and identification of small-molecule (MW 100–1,000) metabolites in cells, tissues, or fluids. This technology is known to be one of the 10 leading breakthrough technologies according to the Massachusetts Institute of Technology (MIT) Technology Review 2005 (MIT Technology Review, 2005). Recently, the process of drug discovery and development has become very expensive while simultaneously, the number of new drug approvals is steadily declining (Scannell
A number of analytical platforms, such as nuclear magnetic resonance (NMR), Fourier transform-infrared spectroscopy (FT-IR), and mass spectrometry (MS) coupled to separation techniques including gas chromatography (GC)-MS, liquid chromatography (LC)-MS, and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), have been used in metabolic fingerprinting and metabolomics. Recently, the technologies that are commonly used for global metabolome studies have been increasingly combined with multi-hyphenated techniques such as GC × GC-time-of-flight (TOF), GC-TOF-MS, and UPLC-quadrupole (Q)-TOF-MS to enable compound analysis using a wider range of metabolome perspectives (Jensen
NMR is a commonly used analytical technique, which identifies and quantifies a wide range of organic compounds. It has a simple sample preparation step while biofluids such as urine and serum can be directly analyzed without preparation step. In addition, it assesses numerous groups of metabolites, so it is suitable for analyzing the components of unknown medicinal plants for further determination of efficacy. Because NMR is non-selective, all the low molecular weight compounds can be detected concurrently with the structural information, which also helps characterizing components of any complex mixtures (Zhang
FT-IR spectrometry is another valuable metabolic fingerprinting tool, which analyzes a diverse range of sample types and metabolites such as carbohydrates, amino acids, lipids, fatty acids, proteins, and polysaccharides simultaneously (Dunn and Ellis, 2005). It also requires minimum sample preparation and relatively little background training and, therefore, it can be easily used as a highly versatile technique. It works by correlating the absorption and vibration of light at specific wavelengths to the functional groups of molecules for the identification of unknown metabolites. The major limitation of FT-IR spectrometry is the relatively low sensitivity and selectivity. In addition, wet samples are difficult to be analyzed because water can be the issue in mid IR (Gromski
MS is a widely used technology, which can identify metabolites by providing rapid and selective qualitative and quantitative data with high sensitivity and resolution. It operates by ion formation and separation, and detection of separated ions (Dunn and Ellis, 2005). GC-MS is a combined system where volatile mixtures of compounds are separated by GC, and the eluted compounds are subsequently detected using MS. GC-MS involves derivatization to induce volatility and thermal stability before analyzing volatile metabolites. After derivatization, it is possible to profile hundreds of metabolites simultaneously, including organic acids, amino acids, sugars, sugar alcohols, aromatic amines, and fatty acids, by direct separation and quantification (Zhang
Another analytical strategy is the LC-MS, where LC separates the metabolites. LC-MS requires lower analysis temperatures and simpler sample preparation than GC-MS does. It does not require sample volatility, so sample derivatization is generally not required. Metabolites are normally detected in positive or negative ion modes and, therefore, a wide range of metabolites including polar, semi-polar, and non-polar compounds and secondary metabolites can be detected by analysis in both modes. The high throughput and comprehensiveness of LC-MS have contributed to its versatility, particularly in targeted metabolite identification and quantification in complex mixtures (Dunn and Ellis, 2005). However, LC-MS has a restricted applicability to compound identification in the non-targeted analysis because of some undifferentiated isomers and formation of multiple adducts. Recently, hydrophilic interaction LC (HILIC)-MS, LC-atmospheric pressure chemical ionization (APCI)-MS, and UPLC-TOF-MS have been successfully used for comprehensive metabolic profiling of natural products (Jensen
Previous studies have shown the metabolic profiling and the discrimination of natural products, such as liquorice roots (
Quality control of herbal extracts is a challenging endeavor because they usually contain numerous phytochemicals (Kim
PCA, partial least squares-discriminant analysis (PLS-DA), and PLS-regression (PLS-R) are widely used multivariate data analysis methods. The PCA is an unsupervised multivariate analysis method, which is widely used in metabolic fingerprinting and profiling. It shows the overview of the obtained data by representing the original multivariate data as an unbiased, lower dimensional output data. This overview provides information not only on the groups of observations, trends, and outliers but also on the relationships between the observations (Eriksson
The PLS analysis is a regression extension of the PCA, which is used to relate the information on two matrices (independent and dependent X and Y variables, respectively) using regression analysis (Eriksson
PLS-R represents the relationship between two X and Y groups of a PLS model and interprets the model to predict Y by analyzing X (Abdi, 2003; Eriksson
Usually, the model is obtained by setting the component in the highest Q2Y value, and the R2Y has the tendency to become close to 1 as the number of components increases. Since the autofit is the process used to obtain the highest Q2Y value, the model naturally passes through the cross-validation test. Autofit, however, can have a limitation in passing the permutation test. The external validation is performed as the first step in determining the accuracy of the model by importing an independent test data set, which was not used in building the model, into the corresponding PLSR model (Kim
Numerous natural resources have been used as medicinal drugs for many centuries worldwide. Various benefits to human health exhibited by natural remedies or herb-derived products have led to these substances being investigated by numerous pharmaceutical companies. For instance, artemisinin extracted from the sweet wormwood (
Veregen® is the first botanical ointment produced by MediGene AG and was originally approved as a prescription drug by the US Food and Drug Administration (FDA) on October 31, 2006 (US Food and Drug Administration, 2006b) (http://www.accessdata.fda.gov/). It is indicated for the topical treatment of external and perianal warts (
The chemistry and manufacturing controls of Veregen 15% ointment have been reviewed and approved by the US FDA and reported in the Chemistry Review application for the Center for Drug Evaluation and Research (Application number: NDA 21-902) (US Food and Drug Administration, 2006a)(http://www.accessdata.fda.gov/). In the chemistry assessment, Veregen was analyzed using HPLC to quantify and identify all the catechin components to assess the overall quality of the drug product. It was found to contained 15% kunecatechins drug substance as well as excipients consisting of isopropyl myristate, white petrolatum, beeswax (
Furthermore,
Marker compounds of Japanese green tea have been identified using 1H-NMR, GC-MS, GC-TOF-MS, GC-flame ionization detector (FID), pyrolysis-gas (PY)-GC-MS, and UPLC-TOFMS by Japanese research groups. Tarachiwin
Pongsuwan
In addition to Japanese green tea and Chinese green tea were also analyzed using metabolite profiling and multivariate statistics for quality assessment using 1H-NMR, UPLC-QTOFMS, and UPLC-DAD-MS, HILIC, and GC × GC-TOF (Le Gall
Fraser
The results of the metabolic fingerprinting and profiling of various kinds of tea provide evidence to support the need for improved quality control of raw materials for the production of Veregen. Furthermore, the standardization of the marker compounds, which can be achieved by regulating several factors including the processing techniques, environmental conditions, and cultivars, will be required to ensure better quality control of Veregen and other NP-derived medicines.
Metabolomics has been developing in response to the need for standardization and quality control of NP-derived medicines as well as the characterization and identification of their underlying molecular mechanism. Moreover, the development of metabolomics techniques including multivariate statistical analyses for evaluating profiling data have has provided further promoted the value of metabolomics. NP-derived medicines usually contain multiple compounds that need to be identified and quantified using various metabolomics techniques. Currently, the quality control of Veregen is performed using HPLC with identification and quantification of eight catechins. However, the active ingredient in this case, which is green tea, contains multiple compounds depending on the origin and analytical techniques. Therefore, it needs to be analyzed using diverse developed metabolomics techniques with multivariate statistical analyses to ensure its batch-to-batch consistency for quality control. We summarized our proposition as Fig. 1. The metabolomics technique will provide a major framework for the quality control of NP-derived medicines.
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2015R1A5A1008958), and by the Chung-Ang University Graduate Research Scholarship in 2015.