
We aimed to understand the molecular changes in host cells that accompany infection by the seasonal influenza A H1N1 virus because the initial response rapidly changes owing to the fact that the virus has a robust initial propagation phase. Human epithelial alveolar A549 cells were infected and total RNA was extracted at 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post infection (h.p.i.). The differentially expressed host genes were clustered into two distinct sets of genes as the infection progressed over time. The patterns of expression were significantly different at the early stages of infection. One of the responses showed roles similar to those associated with the enrichment gene sets to known ‘gp120 pathway in HIV.’ This gene set contains genes known to play roles in preventing the progress of apoptosis, which infected cells undergo as a response to viral infection. The other gene set showed enrichment of ‘Drug Metabolism Enzymes (DMEs).’ The identification of two distinct gene sets indicates that the virus regulates the cell’s mechanisms to create a favorable environment for its stable replication and protection of gene metabolites within 8 h.
Influenza A H1N1 Virus (INV) is a RNA virus belonging to the family
In general, a variety of host responses during viral infection have been identified, including activation of numerous cell death and survival pathways. These pathways include: 1) programmed cell death I (apoptosis), 2) programmed cell death II (autophagy), and 3) endoplasmic reticulum stress with subsequent unfolded protein response (UPR). There has been extensive research on the regulatory roles of these pathways during the influenza virus life cycle (Yeganeh
A549 cells are adenocarcinoma human alveolar basal epithelial cells. The A549 cell line is widely used as an
A549 cells were infected with influenza A virus at a multiplicity of infection (MOI) of 3 for 30 min at 37°C. The virus was propagated at 37°C in 11-day-old chicken embryos. After being washed with phosphate-buffered saline (PBS), cells were infected with influenza virus (IV) at an MOI of 3 for 30 min at 37°C. Infection media consisted of 0.1% glucose, 0.05% vitamin solution, and 0.5 mg/ml L-(tosylamido-2-phenyl) ethyl chloromethyl ketone (TPCK)-treated trypsin in DMEM. Infected cells were then washed and incubated in medium without serum for varying lengths of time. All infected cells were inoculated at less than 37 CT (cycle of threshold) for RT-PCR validation experiments. Total RNA was extracted from A549 cells with the RNeasy Mini Kit (74104, QIAGEN, MD, USA).
RNA integrity was assessed using an Agilent Technologies 2100 Bioanalyzer with an RNA Integrity Number (RIN) value greater than or equal to 7. Cell-to-cell variability of influenza viral infection was quantified by subjecting the cell supernatant to a plaque assay to determine the load of infectious viral particles and then performing real-time reverse transcription quantitative PCR (RT–qPCR) on cell lysates to quantify the level intracellular viral RNA (vRNA) of individual genome segments. The size of PCR-enriched fragments was verified by assessing the template size distributions on an Agilent Technologies 2100 Bioanalyzer using a DNA 1000 chip (Agilent, CA, USA).
The sequencing library was prepared by random fragmentation of the DNA or cDNA sample, followed by 5’ and 3’ adapter ligation. The Illumina Hiseq 4000 generated raw images utilizing HiSeq Control Software (HCS, Illumina, CA, USA) v3.3 for system control and base calling through the integrated primary analysis software Real Time Analysis (RTA, Illumina) v2.5.2. The binary BCL (base calls) value was converted into FASTQ utilizing Illumina package bcl2fastq (V2.16.0.10, Illumina).
The alignment software application “New Tuxedo Protocol” was used for transcript assembly (Pertea
In the transcript assembly, StringTie (Pertea
Ballgown (Frazee
DAVID bioinformatics resources consist of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists (Huang
GSVA is a gene set enrichment method which estimates variation of pathway activity over a sample population in an unsupervised manner. Program operation was employed using basic parameters in ‘RNA-seq’ mode and ‘kernel=TRUE’ using ‘gsva’ function (release version 3.5). The known-gene sets database was updated with the ‘Hallmark class’ and ‘c7 class’ by extending the default class (Hänzelmann
Time-series differentially expressed genes (DEGs) were categorized by WGCNA. Categorized data were divided into 300–1000 gene categories with respect to their biological annotation-interpretation (Supplemetal Table 2). Constructing a weighted gene network entails calculation of the soft thresholding power β, to which co-expression similarity is increased to calculate adjacency. We did this with a power of 16, which is the lowest power for which the scale-free topology fit index curve flattens upon reaching a high value (in this case, approximately 0.95), a relatively large minimum module size of 30, and a moderate sensitivity (Supplementary Table 3).
Elsevier’s Pathway Studio Mammalian, ChemEffect, DiseaseFX analysis: The set of biological networks in this study was created using Pathway Studio 11.0 (Ariadne) software (https://mammalcedfx.pathwaystudio.com/). Elsevier’s Pathway Studio® enables users to explore molecular interactions and cause-and-effect relationships associated with biological processes by integrating a vast knowledge base of biological relationships with analytical and visualization tools.
Ingenuity Pathway Analysis (IPA) metabolomics analysis: DEGs were analyzed using QIAGEN’s IPA software. The canonical pathways and functional processes with the most significant biological importance were identified using the list of DEGs identified with RNA-seq and the Ingenuity Pathways Knowledge Base. Pathway enrichment
In hierarchical clustering, all samples were divided two groups (Supplementary Fig. 1). Early infection and late infection state samples were clustered into separate groups (Supplementary Fig. 2). Known biological function pathways were calculated using GSVA and all samples were divided into two groups by pathway activity score (Fig. 1). GSVA provides increased power to detect subtle pathway activity changes with the ‘Hallmark class’ and ‘c7 class’: ‘Apoptosis (
To identify host cell pathway hijacking, DEGs were selected by statistical testing of time-series expression data (Fig. 2). Gene expression changes were divided into two major groups. Fig. 2 shows 1,031 genes of the time-series DEGs, which were filtered by a threshold Q-value<0.05 (Supplementary Table 1). To find gene expression patterns in a functional module, WGCNA was used to predict groups of highly correlated genes. The results of the WGCNA analysis package analysis divided the DEGs into two groups. The biological functions are divided into two groups at approximately 8 h after infection (Supplementary Table 2). The blue module (blue line) shows increases expression after 4 h and decreases after 8 h, while the turquoise module (turquoise line) decreases at 4 h and then increases after 24 h.
Gene ontology (GO) enrichment analysis (Dennis
The protein gp120 is essential for viral entry into cells as it plays a vital role in attachment to specific cell surface receptors (Gram and Hansen, 1998). Viruses, such as HIV, with gp120 in their genome induce cellular apoptosis (Kapasi
DMEs are the set of metabolic pathways that modify the chemical structure of xenobiotics, which are compound of foreign materials such as replicated viral RNA and other metabolites (Mackenzie
In the Supplementary Fig. 4B, the endoplasmic reticulum (ER) stress response, also known as the unfolded protein response (UPR), is a primitive, evolutionary conserved molecular signaling cascade which has been implicated in multiple biological processes, including innate immunity and the pathogenesis of certain viral infections. Influenza A virus induces ER stress in a pathway-specific manner (Hassan
Kim
In the early infection stage ‘Apoptosis’, ‘G2M checkpoint’, ‘Interferon alpha response’, and other biological functions are enriched. One study reported that apoptosis of virus-infected cells is one important host strategy used to limit viral infection (Scott and Norris, 2008). Cell cycle arrest may inhibit early cell death of infected cells, allow the cells to evade immune defenses, or help promote virus assembly (Bagga and Bouchard, 2014). Innate cytokine responses, such as alpha interferon (IFN-alpha) have roles in determining the rate of virus replication in the initial stages of infection (Price
In the late infection stage, ‘Arachidonic acid metabolism’ and ‘glutathione metabolism’ were found to be enriched. Lu
However, driver modules in host cell function hijacking was still unclear. To identify driver function in the early infection stage, WGCNA used co-expression to predict functional modules. We predicted an early infection module (blue module) and found enriched ‘GP120 pathway in HIV’ (Fig. 3). The MAVS gene (IPS-1, VISA or Cardif) is critical for host defenses to viral infection by inducing type-1 interferons (IFN-I), though its role in virus-induced apoptotic responses has not been elucidated (Lei
In the WGCNA results for late stages of infection, we predicted a late module (turquoise module) and found the ‘Drug metabolism enzyme pathway (DMEs)’ to be enriched (Supplementary Fig. 5). DMEs were additionally found to be enriched in the late stage of infection by DAVID: ‘metabolism of xenobiotics by cytochrome 450 (
A therapeutic strategy that might escape viral resistance is to target host cellular mechanisms involved in viral replication and pathogenesis. The DGIdb integrates drug-gene interactions from 15 different sources (Wagner
Brown
The final goal of studying host-microbe interactions is to inform
We thank Dr. Hueeman Kim for his advice regarding experimental design. This research was funded by the post-genome multi-ministerial genome project (NRF-2014M3C9A3064815) of the Ministry of Science, ICT, and Future Planning, Republic of Korea. This research was supported by National Cancer Center Grant (NCC-1711290).
The authors declare that they have no competing interests.
![]() |
![]() |