Alberghina, L, and Gaglio, D (2014). Redox control of glutamine utilization in cancer.. Cell Death Dis. 5, e1561.
Altman, BJ, Stine, ZE, and Dang, CV (2016). From Krebs to clinic: glutamine metabolism to cancer therapy.. Nat Rev Cancer. 16, 773.
Baenke, F, Chaneton, B, Smith, M, Van Den Broek, N, Hogan, K, Tang, H, Viros, A, Martin, M, Galbraith, L, Girotti, MR, Dhomen, N, Gottlieb, E, and Marais, R (2016). Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells.. Mol Oncol. 10, 73-84.
Bhaskar, PT, and Hay, N (2007). The two TORCs and Akt.. Dev Cell. 12, 487-502.
Bhutia, YD, Babu, E, Ramachandran, S, and Ganapathy, V (2015). Amino Acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs.. Cancer Res. 75, 1782-1788.
Boroughs, LK, and DeBerardinis, RJ (2015). Metabolic pathways promoting cancer cell survival and growth.. Nat Cell Biol. 17, 351-359.
Bryant, KL, Mancias, JD, Kimmelman, AC, and Der, CJ (2014). KRAS: feeding pancreatic cancer proliferation.. Trends Biochem Sci. 39, 91-100.
Bunpo, P, Murray, B, Cundiff, J, Brizius, E, Aldrich, CJ, and Anthony, TG (2008). Alanyl-glutamine consumption modifies the suppressive effect of L-asparaginase on lymphocyte populations in mice.. J Nutr. 138, 338-343.
Byun, JK, Choi, YK, Kim, JH, Jeong, JY, Jeon, HJ, Kim, MK, Hwang, I, Lee, SY, Lee, YM, Lee, IK, and Park, KG (2017). A positive feedback loop between sestrin2 and mTORC2 is required for the survival of glutamine-depleted lung cancer cells.. Cell Rep. 20, 586-599.
Chen, L, and Cui, H (2015). Targeting glutamine induces apoptosis: a cancer therapy approach.. Int J Mol Sci. 16, 22830-22855.
Cheong, H, Lindsten, T, and Thompson, CB (2012). Autophagy and ammonia.. Autophagy. 8, 122-123.
Curthoys, NP, and Watford, M (1995). Regulation of glutaminase activity and glutamine metabolism.. Annu Rev Nutr. 15, 133-159.
Davidson, SM, Papagiannakopoulos, T, Olenchock, BA, Heyman, JE, Keibler, MA, Luengo, A, Bauer, MR, Jha, AK, O’Brien, JP, Pierce, KA, Gui, DY, Sullivan, LB, Wasylenko, TM, Subbaraj, L, Chin, CR, Stephanopolous, G, Mott, BT, Jacks, T, Clish, CB, and Vander Heiden, MG (2016). Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer.. Cell Metab. 23, 517-528.
Daye, D, and Wellen, KE (2012). Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis.. Semin Cell Dev Biol. 23, 362-369.
DeBerardinis, RJ, and Cheng, T (2010). Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer.. Oncogene. 29, 313-324.
DeBerardinis, RJ, Lum, JJ, Hatzivassiliou, G, and Thompson, CB (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation.. Cell Metab. 7, 11-20.
DeBerardinis, RJ, Mancuso, A, Daikhin, E, Nissim, I, Yudkoff, M, Wehrli, S, and Thompson, CB (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis.. Proc Natl Acad Sci USA. 104, 19345-19350.
Dewaele, M, Maes, H, and Agostinis, P (2010). ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy.. Autophagy. 6, 838-854.
Duran, RV, Oppliger, W, Robitaille, AM, Heiserich, L, Skendaj, R, Gottlieb, E, and Hall, MN (2012). Glutaminolysis activates RagmTORC1 signaling.. Mol Cell. 47, 349-358.
Eagle, H (1955). Nutrition needs of mammalian cells in tissue culture.. Science. 122, 501-514.
Eng, CH, Yu, K, Lucas, J, White, E, and Abraham, RT (2010). Ammonia derived from glutaminolysis is a diffusible regulator of autophagy.. Sci Signal. 3, ra31.
Erickson, JW, and Cerione, RA (2010). Glutaminase: a hot spot for regulation of cancer cell metabolism?. Oncotarget. 1, 734-740.
Fernandez-Medarde, A, and Santos, E (2011). Ras in cancer and developmental diseases.. Genes Cancer. 2, 344-358.
Gaglio, D, Metallo, CM, Gameiro, PA, Hiller, K, Danna, LS, Balestrieri, C, Alberghina, L, Stephanopoulos, G, and Chiaradonna, F (2011). Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth.. Mol Syst Biol. 7, 523.
Gaglio, D, Soldati, C, Vanoni, M, Alberghina, L, and Chiaradonna, F (2009). Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts.. PLoS ONE. 4, e4715.
Gao, P, Tchernyshyov, I, Chang, TC, Lee, YS, Kita, K, Ochi, T, Zeller, KI, De Marzo, AM, Van Eyk, JE, Mendell, JT, and Dang, CV (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism.. Nature. 458, 762-765.
Giacobbe, A, Bongiorno-Borbone, L, Bernassola, F, Terrinoni, A, Markert, EK, Levine, AJ, Feng, Z, Agostini, M, Zolla, L, Agro, AF, Notterman, DA, Melino, G, and Peschiaroli, A (2013). p63 regulates glutaminase 2 expression.. Cell Cycle. 12, 1395-1405.
Gorrini, C, Harris, IS, and Mak, TW (2013). Modulation of oxidative stress as an anticancer strategy.. Nat Rev Drug Discov. 12, 931-947.
Gross, MI, Demo, SD, Dennison, JB, Chen, L, Chernov-Rogan, T, Goyal, B, Janes, JR, Laidig, GJ, Lewis, ER, Li, J, Mackinnon, AL, Parlati, F, Rodriguez, ML, Shwonek, PJ, Sjogren, EB, Stanton, TF, Wang, T, Yang, J, Zhao, F, and Bennett, MK (2014). Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer.. Mol Cancer Ther. 13, 890-901.
Hanahan, D, and Weinberg, RA (2011). Hallmarks of cancer: the next generation.. Cell. 144, 646-674.
Hassanein, M, Qian, J, Hoeksema, MD, Wang, J, Jacobovitz, M, Ji, X, Harris, FT, Harris, BK, Boyd, KL, Chen, H, Eisenberg, R, and Massion, PP (2015). Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer.. Int J Cancer. 137, 1587-1597.
He, C, and Klionsky, DJ (2009). Regulation mechanisms and signaling pathways of autophagy.. Annu Rev Genet. 43, 67-93.
Hensley, CT, Wasti, AT, and DeBerardinis, RJ (2013). Glutamine and cancer: cell biology, physiology, and clinical opportunities.. J Clin Invest. 123, 3678-3684.
Hernandez-Davies, JE, Tran, TQ, Reid, MA, Rosales, KR, Lowman, XH, Pan, M, Moriceau, G, Yang, Y, Wu, J, Lo, RS, and Kong, M (2015). Vemurafenib resistance reprograms melanoma cells towards glutamine dependence.. J Transl Med. 13, 210.
Hosokawa, N, Sasaki, T, Iemura, S, Natsume, T, Hara, T, and Mizushima, N (2009). Atg101, a novel mammalian autophagy protein interacting with Atg13.. Autophagy. 5, 973-979.
Hu, W, Zhang, C, Wu, R, Sun, Y, Levine, A, and Feng, Z (2010). Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function.. Proc Natl Acad Sci USA. 107, 7455-7460.
Jacque, N, Ronchetti, AM, Larrue, C, Meunier, G, Birsen, R, Willems, L, Saland, E, Decroocq, J, Maciel, TT, Lambert, M, Poulain, L, Hospital, MA, Sujobert, P, Joseph, L, Chapuis, N, Lacombe, C, Moura, IC, Demo, S, Sarry, JE, Recher, C, Mayeux, P, Tamburini, J, and Bouscary, D (2015). Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition.. Blood. 126, 1346-1356.
Jiang, L, Shestov, AA, Swain, P, Yang, C, Parker, SJ, Wang, QA, Terada, LS, Adams, ND, McCabe, MT, Pietrak, B, Schmidt, S, Metallo, CM, Dranka, BP, Schwartz, B, and DeBerardinis, RJ (2016). Reductive carboxylation supports redox homeostasis during anchorage-independent growth.. Nature. 532, 255-258.
Jung, CH, Jun, CB, Ro, SH, Kim, YM, Otto, NM, Cao, J, Kundu, M, and Kim, DH (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery.. Mol Biol Cell. 20, 1992-2003.
Katt, WP, Antonyak, MA, and Cerione, RA (2015). Simultaneously targeting tissue transglutaminase and kidney type glutaminase sensitizes cancer cells to acid toxicity and offers new opportunities for therapeutic intervention.. Mol Pharm. 12, 46-55.
Kim, MJ, Choi, YK, Park, SY, Jang, SY, Lee, JY, Ham, HJ, Kim, BG, Jeon, HJ, Kim, JH, Kim, JG, Lee, IK, and Park, KG (2017). PPARδ reprograms glutamine metabolism in sorafenib-resistant HCC.. Mol Cancer Res. 15, 1230-1242.
Kim, SY (2015). Cancer metabolism: targeting cancer universality.. Arch Pharm Res. 38, 299-301.
Korangath, P, Teo, WW, Sadik, H, Han, L, Mori, N, Huijts, CM, Wildes, F, Bharti, S, Zhang, Z, Santa-Maria, CA, Tsai, H, Dang, CV, Stearns, V, Bhujwalla, ZM, and Sukumar, S (2015). Targeting glutamine metabolism in breast cancer with aminooxyacetate.. Clin Cancer Res. 21, 3263-3273.
Kuo, TC, Chen, CK, Hua, KT, Yu, P, Lee, WJ, Chen, MW, Jeng, YM, Chien, MH, Kuo, KT, Hsiao, M, and Kuo, ML (2016). Glutaminase 2 stabilizes Dicer to repress Snail and metastasis in hepatocellular carcinoma cells.. Cancer Lett. 383, 282-294.
Le, A, Lane, AN, Hamaker, M, Bose, S, Gouw, A, Barbi, J, Tsukamoto, T, Rojas, CJ, Slusher, BS, Zhang, H, Zimmerman, LJ, Liebler, DC, Slebos, RJ, Lorkiewicz, PK, Higashi, RM, Fan, TW, and Dang, CV (2012). Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells.. Cell Metab. 15, 110-121.
Lee, JI, Kang, J, and Stipanuk, MH (2006). Differential regulation of glutamate-cysteine ligase subunit expression and increased holoenzyme formation in response to cysteine deprivation.. Biochem J. 393, 181-190.
Lee, JS, Kang, JH, Lee, SH, Hong, D, Son, J, Hong, KM, Song, J, and Kim, SY (2016). Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC.. Cell Death Dis. 7, e2511.
Li, D, Fu, Z, Chen, R, Zhao, X, Zhou, Y, Zeng, B, Yu, M, Zhou, Q, Lin, Q, Gao, W, Ye, H, Zhou, J, Li, Z, Liu, Y, and Chen, R (2015). Inhibition of glutamine metabolism counteracts pancreatic cancer stem cell features and sensitizes cells to radiotherapy.. Oncotarget. 6, 31151-31163.
Locasale, JW (2013). Serine, glycine and one-carbon units: cancer metabolism in full circle.. Nat Rev Cancer. 13, 572-583.
Lubos, E, Loscalzo, J, and Handy, DE (2011). Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities.. Antioxid Redox Signal. 15, 1957-1997.
Lushchak, VI (2012). Glutathione homeostasis and functions: potential targets for medical interventions.. J Amino Acids. 2012, 736837.
Marin-Valencia, I, Yang, C, Mashimo, T, Cho, S, Baek, H, Yang, XL, Rajagopalan, KN, Maddie, M, Vemireddy, V, Zhao, Z, Cai, L, Good, L, Tu, BP, Hatanpaa, KJ, Mickey, BE, Mates, JM, Pascual, JM, Maher, EA, Malloy, CR, Deberardinis, RJ, and Bachoo, RM (2012). Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 15, 827-837.
Marquez, J, Alonso, FJ, Mates, JM, Segura, JA, Martin-Rufian, M, and Campos-Sandoval, JA (2017). Glutamine addiction in gliomas.. Neurochem Res. 42, 1735-1746.
Masson, J, Darmon, M, Conjard, A, Chuhma, N, Ropert, N, Thoby-Brisson, M, Foutz, AS, Parrot, S, Miller, GM, Jorisch, R, Polan, J, Hamon, M, Hen, R, and Rayport, S (2006). Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth.. J Neurosci. 26, 4660-4671.
Mates, JM, Segura, JA, Martin-Rufian, M, Campos-Sandoval, JA, Alonso, FJ, and Marquez, J (2013). Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer.. Curr Mol Med. 13, 514-534.
Metallo, CM, Gameiro, PA, Bell, EL, Mattaini, KR, Yang, J, Hiller, K, Jewell, CM, Johnson, ZR, Irvine, DJ, Guarente, L, Kelleher, JK, Vander Heiden, MG, Iliopoulos, O, and Stephanopoulos, G (2011). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia.. Nature. 481, 380-384.
Mohamed, A, Deng, X, Khuri, FR, and Owonikoko, TK (2014). Altered glutamine metabolism and therapeutic opportunities for lung cancer.. Clin Lung Cancer. 15, 7-15.
Nazio, F, Strappazzon, F, Antonioli, M, Bielli, P, Cianfanelli, V, Bordi, M, Gretzmeier, C, Dengjel, J, Piacentini, M, Fimia, GM, and Cecconi, F (2013). mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6.. Nat Cell Biol. 15, 406-416.
Qing, G, Li, B, Vu, A, Skuli, N, Walton, ZE, Liu, X, Mayes, PA, Wise, DR, Thompson, CB, Maris, JM, Hogarty, MD, and Simon, MC (2012). ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation.. Cancer Cell. 22, 631-644.
Sancak, Y, Peterson, TR, Shaul, YD, Lindquist, RA, Thoreen, CC, Bar-Peled, L, and Sabatini, DM (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1.. Science. 320, 1496-1501.
Sanchez, EL, Carroll, PA, Thalhofer, AB, and Lagunoff, M (2015). Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival.. PLoS Pathog. 11, e1005052.
Saxton, RA, Knockenhauer, KE, Wolfson, RL, Chantranupong, L, Pacold, ME, Wang, T, Schwartz, TU, and Sabatini, DM (2016). Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway.. Science. 351, 53-58.
Son, J, Lyssiotis, CA, Ying, H, Wang, X, Hua, S, Ligorio, M, Perera, RM, Ferrone, CR, Mullarky, E, Shyh-Chang, N, Kang, Y, Fleming, JB, Bardeesy, N, Asara, JM, Haigis, MC, DePinho, RA, Cantley, LC, and Kimmelman, AC (2013). Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway.. Nature. 496, 101-105.
Suzuki, S, Tanaka, T, Poyurovsky, MV, Nagano, H, Mayama, T, Ohkubo, S, Lokshin, M, Hosokawa, H, Nakayama, T, Suzuki, Y, Sugano, S, Sato, E, Nagao, T, Yokote, K, Tatsuno, I, and Prives, C (2010). Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species.. Proc Natl Acad Sci USA. 107, 7461-7466.
Szeliga, M, Bogacinska-Karas, M, Kuzmicz, K, Rola, R, and Albrecht, J (2016). Downregulation of GLS2 in glioblastoma cells is related to DNA hypermethylation but not to the p53 status.. Mol Carcinog. 55, 1309-1316.
Tanaka, K, Sasayama, T, Irino, Y, Takata, K, Nagashima, H, Satoh, N, Kyotani, K, Mizowaki, T, Imahori, T, Ejima, Y, Masui, K, Gini, B, Yang, H, Hosoda, K, Sasaki, R, Mischel, PS, and Kohmura, E (2015). Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment.. J Clin Invest. 125, 1591-1602.
Thai, M, Thaker, SK, Feng, J, Du, Y, Hu, H, Ting Wu, T, Graeber, TG, Braas, D, and Christofk, HR (2015). MYC-induced reprogramming of glutamine catabolism supports optimal virus replication.. Nat Commun. 6, 8873.
van Geldermalsen, M, Wang, Q, Nagarajah, R, Marshall, AD, Thoeng, A, Gao, D, Ritchie, W, Feng, Y, Bailey, CG, Deng, N, Harvey, K, Beith, JM, Selinger, CI, O’Toole, SA, Rasko, JE, and Holst, J (2016). ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer.. Oncogene. 35, 3201-3208.
Vander Heiden, MG, Cantley, LC, and Thompson, CB (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation.. Science. 324, 1029-1033.
Velletri, T, Romeo, F, Tucci, P, Peschiaroli, A, Annicchiarico-Petruzzelli, M, Niklison-Chirou, MV, Amelio, I, Knight, RA, Mak, TW, Melino, G, and Agostini, M (2013). GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation.. Cell Cycle. 12, 3564-3573.
White, E (2012). Deconvoluting the context-dependent role for autophagy in cancer.. Nat Rev Cancer. 12, 401-410.
Windmueller, HG, and Spaeth, AE (1974). Uptake and metabolism of plasma glutamine by the small intestine.. J Biol Chem. 249, 5070-5079.
Wise, DR, DeBerardinis, RJ, Mancuso, A, Sayed, N, Zhang, XY, Pfeiffer, HK, Nissim, I, Daikhin, E, Yudkoff, M, McMahon, SB, and Thompson, CB (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction.. Proc Natl Acad Sci USA. 105, 18782-18787.
Wolfson, RL, Chantranupong, L, Saxton, RA, Shen, K, Scaria, SM, Cantor, JR, and Sabatini, DM (2016). Sestrin2 is a leucine sensor for the mTORC1 pathway.. Science. 351, 43-48.
Xiang, L, Xie, G, Liu, C, Zhou, J, Chen, J, Yu, S, Li, J, Pang, X, Shi, H, and Liang, H (2013). Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation.. Biochim Biophys Acta. 1833, 2996-3005.
Xiang, Y, Stine, ZE, Xia, J, Lu, Y, O’Connor, RS, Altman, BJ, Hsieh, AL, Gouw, AM, Thomas, AG, Gao, P, Sun, L, Song, L, Yan, B, Slusher, BS, Zhuo, J, Ooi, LL, Lee, CG, Mancuso, A, McCallion, AS, Le, A, Milone, MC, Rayport, S, Felsher, DW, and Dang, CV (2015). Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis.. J Clin Invest. 125, 2293-2306.
Yang, L, Achreja, A, Yeung, TL, Mangala, LS, Jiang, D, Han, C, Baddour, J, Marini, JC, Ni, J, Nakahara, R, Wahlig, S, Chiba, L, Kim, SH, Morse, J, Pradeep, S, Nagaraja, AS, Haemmerle, M, Kyunghee, N, Derichsweiler, M, Plackemeier, T, Mercado-Uribe, I, Lopez-Berestein, G, Moss, T, Ram, PT, Liu, J, Lu, X, Mok, SC, Sood, AK, and Nagrath, D (2016). Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth.. Cell Metab. 24, 685-700.
Yang, L, Moss, T, Mangala, LS, Marini, J, Zhao, H, Wahlig, S, Armaiz-Pena, G, Jiang, D, Achreja, A, Win, J, Roopaimoole, R, Rodriguez-Aguayo, C, Mercado-Uribe, I, Lopez-Berestein, G, Liu, J, Tsukamoto, T, Sood, AK, Ram, PT, and Nagrath, D (2014). Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer.. Mol Syst Biol. 10, 728.
Yang, L, Venneti, S, and Nagrath, D (2017). Glutaminolysis: A Hallmark of Cancer Metabolism.. Annu Rev Biomed Eng. 19, 163-194.
Yoshida, GJ (2015). Metabolic reprogramming: the emerging concept and associated therapeutic strategies.. J Exp Clin Cancer Res. 34, 111.
Yu, D, Shi, X, Meng, G, Chen, J, Yan, C, Jiang, Y, Wei, J, and Ding, Y (2015). Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma.. Oncotarget. 6, 7619-7631.
Yuneva, M, Zamboni, N, Oefner, P, Sachidanandam, R, and Lazebnik, Y (2007). Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells.. J Cell Biol. 178, 93-105.
Yuneva, MO, Fan, TW, Allen, TD, Higashi, RM, Ferraris, DV, Tsukamoto, T, Mates, JM, Alonso, FJ, Wang, C, Seo, Y, Chen, X, and Bishop, JM (2012). The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type.. Cell Metab. 15, 157-170.
Zhang, C, Liu, J, Zhao, Y, Yue, X, Zhu, Y, Wang, X, Wu, H, Blanco, F, Li, S, Bhanot, G, Haffty, BG, Hu, W, and Feng, Z (2016). Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis.. Elife. 5, e10727.
Zhang, J, Wang, C, Chen, M, Cao, J, Zhong, Y, Chen, L, Shen, HM, and Xia, D (2013). Epigenetic silencing of glutaminase 2 in human liver and colon cancers.. BMC Cancer. 13, 601.
Zoncu, R, Efeyan, A, and Sabatini, DM (2011). mTOR: from growth signal integration to cancer, diabetes and ageing.. Nat Rev Mol Cell Biol. 12, 21-35.