Biomolecules & Therapeutics 2025; 33(1): 54-74  https://doi.org/10.4062/biomolther.2024.215
Probiotics as Potential Treatments for Neurodegenerative Diseases: a Review of the Evidence from in vivo to Clinical Trial
Jin Hee Kim1, Yujin Choi1, Seungmin Lee1 and Myung Sook Oh1,2,*
1Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447,
2Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
*E-mail: msohok@khu.ac.kr
Tel: +82-2-961-9436, Fax: +82-2-963-9436
Received: November 10, 2024; Revised: December 8, 2024; Accepted: December 9, 2024; Published online: December 16, 2024.
© The Korean Society of Applied Pharmacology. All rights reserved.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
Neurodegenerative diseases (NDDs), characterized by the progressive deterioration of the structure and function of the nervous system, represent a significant global health challenge. Emerging research suggests that the gut microbiota plays a critical role in regulating neurodegeneration via modulation of the gut-brain axis. Probiotics, defined as live microorganisms that confer health benefits to the host, have garnered significant attention owing to their therapeutic potential in NDDs. This review examines the current research trends related to the microbiome-gut-brain axis across various NDDs, highlighting key findings and their implications. Additionally, the effects of specific probiotic strains, including Lactobacillus plantarum, Bifidobacterium breve, and Lactobacillus rhamnosus, on neurodegenerative processes were assessed, focusing on their potential therapeutic benefits. Overall, this review emphasizes the potential of probiotics as promising therapeutic agents for NDDs, underscoring the importance of further investigation into this emerging field.
Keywords: Probiotics, Neurodegenerative diseases, Microbiota-gut-brain axis
INTRODUCTION

Neurodegenerative diseases (NDD) are characterized by the progressive degeneration and death of neurons, resulting in cognitive decline, motor dysfunction, and behavioral changes (Kim and Joh, 2012; Heemels, 2016). Representative NDDs include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). Although NDDs share common pathological features, such as protein aggregation, oxidative stress, and neuroinflammation, their exact underlying mechanisms have not been elucidated due to their significant complexity (Gupta et al., 2023; Gadhave et al., 2024). The prevalence of NDDs has increased significantly with the aging of the global population, highlighting the urgent need for a clearer understanding of their underlying mechanisms and the development of effective treatments (Ding et al., 2022; Huang et al., 2023).

Recent studies on the pathogenesis of NDDs have resulted in the development of diverse therapeutic strategies (Kostrzewa and Segura-Aguilar, 2003; Dar et al., 2020). While initial approaches focused on small-molecule drugs and immunotherapy, recent efforts have expanded to include innovative techniques, such as gene therapy (Sapko et al., 2022; Mead et al., 2023; Van de Roovaart et al., 2023; McFarthing et al., 2024). Notably, there is growing interest in systemic factors beyond the central nervous system (CNS), with increasing evidence supporting interactions along the microbiota-gut-brain (MGB) axis in the context of NDDs (Quigley, 2017; Mou et al., 2022). These studies have suggested the existence of a significant link between gut health and neurodegeneration, opening up new therapeutic possibilities, including the potential use of probiotics and other gut-targeting interventions.

Probiotics are defined by the FAO and WHO as “live microorganisms which, when administered in adequate amounts, confer health benefits on the host.” (Latif et al., 2023). These beneficial microbes play a crucial role in promoting health by improving the composition of the gut microbiota, as well as enhancing immune function, leading to a range of positive health effects (Sanders et al., 2019). Recent research has also highlighted the potential advantages of probiotics in the context of neurological health, particularly their influence on the MGB axis (Snigdha et al., 2022). This connection indicates that probiotics may help to manage symptoms and support the treatment of NDDs, such as AD and PD. This report focused on the role of probiotics in the treatment of NDDs through a review of existing clinical and preclinical studies.

THE MICROBIOTA-GUT-BRAIN AXIS IN NEURODEGENERATIVE DISEASES

The gut, which is the largest endocrine organ in the body, produces an array of hormones and peptides that play pivotal roles in systemic health (Drucker, 2002; Hu et al., 2024b). Among the many specialized intestinal epithelial cells, enteroendocrine cells monitor luminal contents and release signaling molecules such as hormones and peptides, which interact with afferent vagal receptors (Gribble and Reimann, 2016). Additionally, the gut microbiota regulates the synthesis and secretion of these hormonal signals, by metabolites such as short-chain fatty acids (SCFAs), which significantly influence the intestinal environment and are linked to neural health (Dalile et al., 2019).

Studies have indicated that gut microbiota dysbiosis can potentially affect disease pathology in patients with NDDs such as AD and PD (Sun and Shen, 2018; Liu et al., 2020; Chidambaram et al., 2022). Dysbiosis can also decrease beneficial bacterial populations and increase harmful strains, leading to gut inflammation, which, in turn, promotes the production of inflammatory factors and increases intestinal permeability (Thevaranjan et al., 2017). Previous studies have shown that the ratio of Firmicutes/Bacteroidetes is disturbed in patients with NDDs compared to healthy controls (Ojha et al., 2023). This cascade is often accompanied by a reduction in neuroprotective metabolites, such as butyrate, and an increase in pathological proteins, such as amyloid-beta (Aβ) and alpha-synuclein (α-syn) (Marizzoni et al., 2020; Mahbub et al., 2024). Although these processes may vary with the specific disease, they generally amplify neuroinflammation in NDDs and are recognized as contributing factors to neuronal death.

The MGB axis employs multiple pathways to facilitate communication between the gut and brain. For example, the vagus nerve functions as a primary conduit, directly linking microbial signals to the central nervous system and connecting microbial activity to neural processes (Fulling et al., 2019). Neuroendocrine pathways, particularly the hypothalamic-pituitary-adrenal (HPA) axis, also play a crucial role in this interaction (Morais et al., 2021; Mlynarska et al., 2022). For example, stress-induced activation of the HPA axis stimulates cortisol release, which increases gut permeability and disrupts the microbial balance, thereby influencing the MGB axis. Furthermore, blood-mediated interactions enable gut microbiota-derived metabolites to enter the bloodstream and influence brain function (Swer et al., 2023). Collectively, these mechanisms demonstrate how the MGB axis dynamically responds to environmental and physiological changes, ultimately influencing neurological health and the progression of neurodegenerative conditions (Fig. 1).

Figure 1. Overview image of the microbiota-gut-brain axis in neurodegenerative diseases. HPA axis; Hypothalamic-pituitary-adrenal axis.

Alzheimer’s disease

One of the primary pathological features of AD is the accumulation of abnormal extracellular Aβ plaques, arising from the cleavage of amyloid precursor protein (APP) (Boxer and Sperling, 2023). This pathological process, combined with tau protein hyperphosphorylation and misfolding, results in the formation of neurofibrillary tangles within neurons. In addition to these primary pathologies, oxidative stress, neuroinflammation, and mitochondrial dysfunction can all critically contribute to neuronal damage, and intensify neurodegenerative processes (Scheltens et al., 2021). Collectively, these pathological changes drive substantial neuronal loss, impair synaptic function, and disrupt the neurotransmitter system, particularly the cholinergic system, which plays an essential role in memory and learning (Khan et al., 2020).

The MGB axis is increasingly being recognized as a key factor influencing the onset and progression of AD (Kesika et al., 2021). Recent studies have proposed that Aβ and tau proteins, which play central roles in AD pathology, may originate in the gut as well as the brain (Jin et al., 2023). Although the exact mechanisms remain unclear, these pathological proteins may be transported from the gut to the brain via the vagus nerve or systemic circulation, potentially contributing to AD development.

In patients with AD, dysbiosis of the gut microbiota has been consistently observed. This condition is characterized by an increase in species such as Helicobacter pylori, Klebsiella pneumoniae, Bacteroides fragilis, and Eggerthella lenta, alongside a decrease in Butyrivibrio hungatei, Butyrivibrio proteoclasticus, and Lactobacillales (Roubaud-Baudron et al., 2012; Haran et al., 2019). Moreover, gut dysbiosis has been shown to influence several neuroinflammatory processes that can exacerbate AD pathology. For example, microbial imbalance is associated with increased production of pro-inflammatory cytokines, such as interleukin (IL)-1β and tumor necrosis factor-α, both of which are linked to neuroinflammation and neurodegeneration (Zhao et al., 2023). This inflammatory state can disrupt intestinal integrity or increase blood-brain barrier (BBB) permeability, thereby facilitating the entry of gut-derived Aβ and tau proteins into the CNS (Mou et al., 2022). This infiltration can thus activate brain-resident immune cells, further accelerating the neurodegenerative changes associated with AD.

Parkinson’s disease

PD, along with AD, is one of the most actively-researched NDDs associated with the MGB axis. The presence of abnormal intracellular aggregates of α-syn, known as Lewy bodies, within neurons is a defining pathological hallmark of PD (Wakabayashi et al., 2013; Taylor et al., 2020). This aggregation of misfolded α-syn, often combined with mitochondrial dysfunction and oxidative stress, disrupts neuronal homeostasis and leads to the progressive degeneration of dopaminergic neurons in the substantia nigra, a brain region critical for motor control (Antony et al., 2013; Kalia and Lang, 2015). Consequently, α-syn has been recognized as both a signature pathology and a primary pathogenic agent in PD progression.

Research linking the MGB axis to PD originated with Braak’s hypothesis in 2003, which proposed that an unknown pathogen, such as a virus or bacterium, could initiate sporadic PD in the gut (Braak et al., 2003). This hypothesis was further supported by the observation that many patients with PD experience gastrointestinal disturbances, including constipation and nausea, often years prior to the onset of motor symptoms (Rietdijk et al., 2017). These early symptoms have also drawn attention to the gut as a potential starting point in the cascade of PD pathology, encouraging a more extensive exploration of gut-brain connections in the disease.

A study on patients with PD revealed significant alterations in the composition of gut microbiota. Specifically, there were increased abundances of genera such as Verrucomicrobia, Mucispirillum, Porphyromonas, Lactobacillus, and Parabacteroides, alongside decreased levels of Prevotella and Prevotellaceae when compared to healthy controls (Scheperjans et al., 2015; Lin et al., 2019). Following Braak’s hypothesis, subsequent studies have identified specific bacterial strains in the gut microbiota, including Proteus mirabilis and Citrobacter rodentium, as potential contributors to PD (Choi et al., 2018; He et al., 2024). These strains have further been suggested to induce misfolding and aggregation of α-syn within the ENS (Huh et al., 2023). Once misfolded in the gut, α-syn can travel along the vagus nerve to the brain in a prion-like fashion, potentially seeding Lewy pathologies in key brain regions associated with PD. Experimental models have further supported this mechanism, demonstrating that misfolded α-syn can spread from the gut to the brain, triggering neurodegenerative changes similar to those observed in patients with PD (Kim et al., 2019).

In addition to bacterial contributions, severe Lewy pathology has been identified in the enteric nervous system (ENS) of patients with PD, correlating with gastrointestinal symptoms, such as chronic constipation, and reflecting early dysfunction within the MGB axis (Hirayama et al., 2023). This gut-origin hypothesis is further supported by the finding that intestinal inflammation and gut permeability increase in PD, allowing bacterial toxins and inflammatory cytokines to influence both α-syn aggregation and neuroinflammatory processes (Sampson et al., 2016; Mou et al., 2022). These disruptions may compromise the BBB, and facilitate the translocation of misfolded proteins and inflammatory mediators to the CNS. Consequently, this cascade of events can amplify neuroinflammation, further contributing to dopaminergic neuronal loss and accelerating the progression of PD (Tansey et al., 2022).

Multiple sclerosis

Multiple sclerosis (MS) is a chronic inflammatory disorder that affects the CNS and presents in both relapsing-remitting and progressive forms (Correale et al., 2017). This condition involves the development of numerous demyelinating lesions, accompanied by lymphocyte infiltration and antibody deposition, resulting in various neurological impairments. The pathogenesis of MS is believed to stem from an autoimmune response primarily involving T cells that react to myelin autoantigens, such as myelin basic protein (Garg and Smith, 2015). Genetic studies have previously established associations between MS susceptibility and genes involved in the activation and proliferation of CD4+ T cells, while evidence has highlighted the critical roles of Th1 and Th17 cells in disease progression (Moser et al., 2020). Moreover, emerging research has indicated that B cells play a significant role in CNS inflammation through mechanisms beyond antibody production, including antigen presentation and cytokine secretion, thereby adding to the complexity of MS immunopathogenesis (van Langelaar et al., 2020).

Recent studies have also indicated that the MGB axis significantly influences MS (Dunalska et al., 2023). Research utilizing spontaneous experimental autoimmune encephalomyelitis (EAE) mouse models has demonstrated that gut microbiota dysbiosis induces CNS autoimmunity through alterations in the gut and peripheral immunity (Johanson et al., 2020; Moles et al., 2021). Correspondingly, patients with MS exhibit an altered gut microbiota, which is linked to increased disease activity. Notably, stool transplantation from patients with MS into germ-free mice exacerbates EAE severity, suggesting that dysbiosis may facilitate immune dysregulation and trigger CNS autoimmunity (Wang et al., 2021). Accordingly, patients with MS exhibit gut dysbiosis characterized by reduced levels of Faecalibacterium, Roseburia, Haemophilus, and Bilophila, alongside an increased abundance of Clostridia, which has been linked to heightened disease activity (Ventura et al., 2019; Ling et al., 2020; Saresella et al., 2020). Specific microbial strains, such as Pseudomonas, Mycoplasma, and Faecalibacterium, are more prevalent in patients with MS, and are correlated with changes in dendritic cell maturation and inflammatory signaling pathways (iMSMS consortium, 2022; Thirion et al., 2023). Moreover, mice transplanted with feces from patients with MS showed reduced levels of IL-10, a cytokine crucial for regulating CNS autoimmunity, leading to increased disease severity. The interplay between the gut microbiota and MS is complex and involves microbial metabolites such as SCFAs, which possess anti-inflammatory properties and may enhance blood-brain barrier integrity. Disruption of this barrier allows inflammatory cells to infiltrate the CNS, thereby exacerbating neuroinflammation and MS 38022314 (Sharifa et al., 2023). Consequently, changes in microbial diversity may contribute to disease onset and progression by modulating immune responses and promoting inflammatory processes.

Amyotrophic lateral sclerosis

Despite extensive research similar to that conducted for other NDDs, the pathophysiology of motor neuron loss in ALS remains unclear (Hardiman et al., 2017). Studies have commonly focused on mutations in genes such as superoxide dismutase 1, transactive response DNA binding protein 43 kDa (TDP-43), fused in sarcoma/translated in liposarcoma, and C9ORF72 repeats, along with additional low-frequency genes linked to ALS risk (Van Es, 2024). While many studies have emphasized the role of motor neurons, the detrimental effects of these mutations on astrocytes indicate their contribution to motor neuron loss.

Recent studies have highlighted the significant impact of gut health on the pathophysiology of ALS, particularly via the MGB axis (Zheng et al., 2023; Noor Eddin et al., 2024). For example, phosphorylated TDP-43 has been detected in the gut prior to the onset of neurological symptoms, indicating that gut alterations play a critical role in ALS development. Several factors, such as intestinal inflammation and increased barrier permeability, can profoundly affect brain function and overall well-being. Moreover, gastrointestinal symptoms, including pain, dysphagia, reflux, and constipation, have been commonly reported in patients with ALS, thus reinforcing the notion of a gut-brain connection (Adamske et al., 2021; Lee et al., 2021b).

Dysbiosis, or an imbalance in the composition of the gut microbiome, has also been observed in both patients with ALS and experimental animal models (Kim et al., 2022; Lee et al., 2024). The patients with ALS exhibit a higher abundance of the Bacteroidetes and a lower abundance of Prevotella spp., Eubacterium rectale and Roseburia intestinalis when compared to healthy controls (Zeng et al., 2020; Nicholson et al., 2021; Hertzberg et al., 2022). In addition, although progress has been made in understanding the relationship between the gut microbiome and NDDs, this field is still in its infancy. Further exploration of the complex interactions within the MGB axis and their contributions to the pathogenesis of ALS may provide novel insights into the mechanisms underlying this disease. Ultimately, this study highlights the potential of direct gut modulation as a therapeutic strategy for managing ALS, paving the way for innovative treatment approaches.

In addition to the classical examples AD, PD, MS, and ALS, NDDs encompass a variety of other disorders, including Huntington’s disease. The MGB axis has emerged as a significant area of research, particularly in relation to AD, PD, MS, and ALS, owing to its potential impact on disease pathophysiology and progression. Although investigations into the role of the MGB axis in other neurodegenerative conditions are beginning, these studies are still in the nascent stages and require further exploration to fully elucidate the mechanisms involved.

PROBIOTICS FOR NDDS TREATMENT

Lactobacillus plantarum (Lactiplantibacillus plantarum)

Lactobacillus plantarum (L. plantarum) is a non-gas-producing lactic acid bacterium found in dairy products, vegetables, meat, wine, the gastrointestinal tract, and the genitourinary system, which is generally recognized as safe (Seddik et al., 2017). Numerous studies have reported the therapeutic effects of this species on NDDs. For example, in AD in vivo models, L. plantarum has been shown to reduce neuroinflammation and the accumulation of Aβ in the brain (Hu et al., 2024a). It further enhances synaptic plasticity, improving cognitive function. Additionally, several studies have shown that L. plantarum contributes to a healthier gut environment by restoring the microbial balance and reducing gut inflammation (Wang et al., 2022b; Di Salvo et al., 2024). For example, Song et al. reported that the anti-AD effects of L. plantarum are mediated by the regulation of the phosphoinositide-3-kinase/ protein kinase B (Akt)/ glycogen synthase kinase-3β (GSK-3β) pathway (Song et al., 2022).

L. plantarum demonstrated similarly promising effects in PD models. In animal models of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, and 6-hydroxydopamine (6-OHDA), L. plantarum consistently improved motor deficits and protected dopaminergic neurons in the brain (Chu et al., 2023; Ma et al., 2023b; Qi et al., 2024). Qi et al. further reported that L. plantarum exerts these therapeutic effects on PD by modulating the glucagon-like peptide 1 (GLP-1)/peroxisome proliferator-activated receptor gamma coactivator-1α pathway, while Ma et al. demonstrated that L. plantarum reduces the exaggerated cortical beta oscillations associated with PD symptoms (Ma et al., 2023b; Qi et al., 2024). Furthermore, Lu et al. discovered that after 12 weeks of L. plantarum administration, patients with PD showed significant improvements in unified PD rating scale (UPDRS) motor and PD questionnaire-39 scores, indicating its potential therapeutic impact in human PD cases, as well as in animal models (Lu et al., 2021).

Moreover, in an MS model induced by cuprizone, L. plantarum improved motor function, promoted the myelination of nerve fibers in the brain, and regulated blood levels of leptin and serotonin, indicating its broader therapeutic potential across NDDs (Sajedi et al., 2021, 2023) (Table 1).

Table 1 Overview of the therapeutic effects of L. plantarum on NDDs

DiseaseResearch typesStrainModelDoseKey effectsRef
ADin vivoL. plantarum ATCC8014APP/PS1 mice1×108 CFU/kg for 6 weeks- Alleviation of neuroinflammation and neurodegeneration
- Reduction in brain Aβ accumulation and tau protein phosphorylation
- Enhancement of synaptic plasticity in the brain
- Restoration of gut microbiota and intestinal barrier integrity
Hu et al., 2024a
in vivoL. plantarum HEAL9SAMP8 mice1×109 CFU/mouse for 2 months- Alleviation of cognitive impairment and gut motility disorders
- Reduction in neuroinflammation and Aβ accumulation in the brain
Di Salvo et al., 2024
in vivoL. plantarum MWFLp-182D-galactose injected mice1×109 CFU/mL (0.2 mL/mouse) for 8 weeks- Increase in anti-inflammatory cytokines and expression of tight junction proteins in the gut
- Enhancement of postsynaptic plasticity in the brain
- Increase in BDNF and Nrf2 levels in the brain
Nie et al., 2024
in vivoL. plantarum MA2D-galactose/ AlCl3-injected rats1×108 or 109 CFU/kg for 12 weeks- Improvement in cognitive impairment and anxiety-related behaviors
- Protection of neurons and reduction of Aβ accumulation in the brain
- Reduction of neuroinflammation
- Alleviation of intestinal mucosal damage and restoration of gut microbiota composition
Wang et al., 2022b
in vivoL. plantarum DP189D-galactose/ AlCl3-injected mice1×109 CFU/mL for 10 weeks- Improvement in cognitive impairment
- Increase in serotonin, dopamine, and GABA levels
- Protection of neurons and reduction of Aβ accumulation in the brain
- Inhibition of tau hyperphosphorylation via modulation of the PI3K/Akt/GSK-3β pathway in the brain
Song et al., 2022
in vivoL. plantarum MTCC 1325D-galactose-injected albino rats12×108 CFU/mL (10 mL/kg) for 60 days- Improvement in cognitive impairment
- Increase in acetylcholine levels in the brain
- Inhibition of Aβ accumulation
Nimgampalle and Kuna, 2017
in vivoL. plantarum C29D-galactose injected mice1×1010 CFU/mouse for 5 weeks- Improvement in cognitive impairment
- Regulation of BDNF and CREB activation
- Reduction in expression of inflammatory factors
Woo et al., 2014
PDin vivoL. plantarum SG5MPTP-injected mice1×109 CFU for 35 days- Improvement in motor dysfunction
- Protection of neurons and inhibition of α-synuclein aggregation
- Reduction in neuroinflammation and mitigation of BBB damage
- Restoration of gut microbiota composition and regulation of GLP-1 secretion
Qi et al., 2024
in vivoL. plantarum CCFM405Rotenone-injected mice1×109 CFU/mL (0.2 mL/mouse) for 9 weeks- Improvement in motor dysfunction and constipation
- Protection of neurons and alleviation of neuroinflammation
- Increase in dopamine and serotonin levels in the brain
- Reduction of gut inflammation and restoration of gut microbiota composition
- Enhanced biosynthesis of branched-chain amino acids in the gut
Chu et al., 2023
in vivoL. plantarum PS1286-OHDA-injected rats1.5×1010 CFU for 6 weeks- Normalization of power spectral density of beta oscillations in the cortex
- Improvement in motor dysfunction
Ma et al., 2023b
in vivoL. plantarum DP189MPTP-injected mice1×109 CFU/mL (0.2 mL/mouse) for 14 days- Reduction of inflammation and oxidative stress-related factors in the brain
- Decrease in α-synuclein accumulation in the brain
- Restoration of gut microbiota composition
Wang et al., 2022a
Case reportsL. plantarum PS128Patients with PD2 capsules (3×109 CFU/capsule) for 12 weeks- Improvement in UPDRS motor scores
- Improvement in PDQ-39
Lu et al., 2021
MSin vivoL. plantarum PTCC1058Cuprizone-induced mice1×108 CFU/kg for 2 months- Improvement of motor impairment
- Improvement of myelination of the nerve fibers in the brain
Sajedi et al., 2023
in vivoL. plantarum PTCC1058Cuprizone-induced mice1×108 CFU/kg for 2 months- Decrease in blood leptin
- Increase in blood serotonin
Sajedi et al., 2021

AD, Alzheimer’s disease; L. plantarum, Lactobacillus plantarum; APP/PS1, amyloid precursor protein and mutant human presenilin 1; CFU, colony forming unit; Aβ, Amyloid β; SAMP8, Senescent accelerated prone 8; BDNF, brain-derived neurotrophic factor; NRF-2, Nuclear factor erythroid-2-related factor 2; GABA, γ-aminobutyric acid; CREB, c-AMP response element binding protein; PD, Parkinson’s disease; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; BBB, Blood-Brain Barrier; GLP-1, Glucagon-Like Peptide 1; UPDRS, Unified Parkinson's disease rating scale; PDQ-39, Parkinson's Disease Questionnaire-39; MS, Multiple sclerosis.



Bifidobacterium breve

Bifidobacterium breve (B. breve) is one of the first bacteria isolated from the feces of healthy infants, and has been recognized as an early colonizer of the infant gut with antimicrobial activity (Sushma et al., 2023). This strain is primarily found in the breast milk and feces of healthy infants (Laursen et al., 2021).

B. breve has shown promising effects on cognitive improvement in animal models of AD, as well as in patients with cognitive impairment (Kobayashi et al., 2019a; Xiao et al., 2020; Ohno et al., 2022; Zhu et al., 2023). In multiple AD animal models, B. breve consistently reduced neuroinflammation and inhibited Aβ accumulation, both of which key factors in AD pathology. Abdelhamid et al. further demonstrated that B. breve exerts its effects through different pathways, including regulation of the Akt/GSK-3β pathway in wild-type mice and activation of the extracellular signal-regulated kinase (ERK)/ hypoxia inducible factor-1α (HIF-1α) pathway in APP knock-in mice (Abdelhamid et al., 2022a, 2022b). Moreover, findings from four randomized controlled trials (RCTs) indicated that B. breve improves cognitive scores (AD assessment scale-cognitive component-Japanese version, Mini-Mental State Examination [MMSE] and repeatable battery for neuropsychological status [RBANS]) in elderly patients with mild cognitive impairment (MCI) (Kobayashi et al., 2019b; Xiao et al., 2020; Asaoka et al., 2022). Notably, the RBANS scores correlated with hemoglobin A1c levels, suggesting a link between cognitive function and metabolic health (Bernier et al., 2021).

B. breve has further demonstrated therapeutic benefits in both animal models of PD and MS. In PD models, B. breve significantly improved MPTP-induced cognitive and behavioral deficits, and helped to restore the gut balance (Valvaikar et al., 2024). Ishii et al. also reported that B. breve promotes fear extinction by normalizing abnormal neuropsin expression in the hippocampus in MPTP-treated mice (Ishii et al., 2021). Furthermore, Hasaniani et al. found that B. breve outperformed another probiotic, Lactobacillus casei in a cuprizone-induced MS rat model, by more effectively enhancing cognitive function, reducing oxidative stress, and alleviating demyelination, underscoring B. breve’s potential as a therapeutic agent across multiple NDDs (Hasaniani et al., 2024) (Table 2).

Table 2 Overview of the therapeutic effects of B. breve on NDDs

DiseaseResearch typesStrainModelDoseKey effectsRef
ADin vivoB. breve MCC1274AppNL-G-F mice1×109 CFU/mouse for 4 weeks- Improvement in cognitive function
- Reduction in Aβ accumulation and neuroinflammation in the brain
- Increase in synaptic protein expression in the brain
Abdelhamid et al., 2024
in vivoB. breve HNXY26M4APP/PS1 Mice1×109 CFU/mouse for 12 weeks- Improvement in cognitive function
- Alleviation of neuroinflammation and synaptic dysfunction
- Restoration of gut microbiota balance
Zhu et al., 2023
in vivoB. breve MCC1274APP Knock-In mice1×109 CFU/mouse for 4 months- Increase in antioxidant-active metabolites in plasma
- Increase in glutathione-related metabolites in plasma
Ohno et al., 2022
in vivoB. breve MCC1274Wild type mice1×109 CFU/mouse for 4 months- Reduction in Aβ42 levels and tau phosphorylation in the brain
- Activation of the AKT/GSK-3β pathway in the brain
- Inhibition of neuroinflammation
Abdelhamid et al., 2022a
in vivoB. breve MCC1274APP Knock-In mice1×109 CFU/mouse for 4 months- Improvement in memory impairment
- Inhibition of Aβ accumulation
- Activation of the ERK/HIF-1α signaling pathway
- Inhibition of neuroinflammation
Abdelhamid et al., 2022b
in vivoB. breve MCC1274Aβ-Injected mice1×109 organisms/mouse for 11 days- Improvement in cognitive function
- Inhibition of gene expression related to inflammation and immune responsiveness in the brain
Kobayashi et al., 2017
RCTB. breve MCC1274Older patients with MCI2×1010 CFU for 24 weeks- Improvement in the "orientation" subscale of ADAS-Jcog
- Improvement in the "orientation in time" and "writing" subscales of MMSE
Asaoka et al., 2022
RCTB. breve MCC1274Older patients with MCI2×1010 CFU for 16 weeks- Total RBANS scores are correlated with hemoglobin A1c levels.Bernier et al., 2021
RCTB. breve MCC1274Older patients with MCI2×1010 CFU for 16 weeks- Increase in total RBANS scores
- Increase in scores of immediate memory, visuospatial/constructional, and delayed memory in both intention-to-treat analysis and per-protocol analysis
Xiao et al., 2020
RCTB. breve MCC1274Older adults with memory comlaints2 capsules (1×1010 CFU/capsule) for 12 weeks- Increase in the 'immediate memory' subscale of RBANS and MMSEKobayashi et al., 2019b
Clinical trialsB. breve MCC1274Older patients with MCI2 capsules (2×1010 CFU/capsule) for 24 weeks- Increase in MMSE scores
- Increase in POMS2 and GSRS scores
Kobayashi et al., 2019a
PDin vivoB. breve Bif11MPTP-injected rats1 or 2×1010 CFU/mouse for 21 days- Improvement in cognitive and motor functions
- Protection of neurons and inhibition of neuroinflammation
- Restoration of SCFAs in the gut and reduction of intestinal permeability
Valvaikar et al., 2024
in vivoB. breve CCFM1067MPTP-injected mice1.0×109 CFU/mL (0.2 mL/mouse) for 33 days- Protection of neurons and inhibition of neuroinflammation
- Alleviation of oxidative stress and mitigation of BBB damage
- Restoration of gut microbiota balance
Li et al., 2022
in vivoB. breve MCC1274MPTP-injected mice1×109 organisms/mouse for 4 days- Recovery of facilitation of contextual fear extinction
- Enhancement of synaptic plasticity in the brain
- Reduction of neuropsin levels in the brain
Ishii et al., 2021
MSin vivoB. breve PTCC1367Cuprizone-induced rats2×109 CFU/mouse for 28 days- Improvement in cognitive function
- Alleviation of oxidative stress and demyelination
Hasaniani et al., 2024

AD, Alzheimer’s disease; B. breve, Bifidobacterium breve; APP/PS1, amyloid precursor protein and mutant human presenilin 1; CFU, colony forming unit; Aβ, Amyloid β; APP, Amyloid precursor protein; AKT, Protein kinase B; GSK-3β, glycogen synthase kinase-3β; ERK, Extracellular signal-regulated kinase; HIF-1α, Hypoxia Inducible Factor 1α; RCT, Randomized controlled trial; MCI, Mild cognitive impairment; ADAS-Jcog, Alzheimer Disease Assessment Scale (Japanese version) cognitive subscale; MMSE, Mini-Mental State Examination; RBANS, Repeatable Battery for the Assessment of Neuropsychological Status; POMS2, Profile of Mood States 2nd Edition; GSRS, Gastrointestinal Symptom Rating Scale; PD, Parkinson’s disease; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; SCFAs, Short-chain fatty acids; BBB, Blood-Brain Barrier; MS, Multiple sclerosis.



Lacticaseibacillus rhamnosus (Lactobacillus rhamnosus)

Many bacterial strains that were once classified as Lactobacillus casei have now been reclassified, including the species Lactobacillus rhamnosus (Lacticaseibacillus rhamnosus; L. rhamnosus) and Lactobacillus paracasei (Huang et al., 2018). L. rhamnosus has been isolated from various environments, including the human gut and vagina, and has been shown to exert therapeutic effects in numerous animal models of NDDs (Chung et al., 2023).

In various animal models of AD, L. rhamnosus consistently improved cognitive and memory functions, and further inhibited neuroinflammation and reduced blood levels of Aβ (Li et al., 2023). Akhgarjand et al. previously conducted an RCT involving patients with AD, finding that a 12-week supplementation of L. rhamnosus significantly improved MMSE, CFT, and GAD-7 scores (Akhgarjand et al., 2022). Thus, L. rhamnosus exhibited significant therapeutic effects in both animal models and human patients with AD.

Furthermore, in models of PD, L. rhamnosus has been shown to improve motor deficits and protect neurons (Xie and Prasad, 2020; Aktas et al., 2024). It also helps restore the gut microbial balance. Notably, Xie et al. discovered that supplementation with L. rhamnosus alleviated hippocampus-dependent cognitive deficits in 6-OHDA-injected rats (Xie and Prasad, 2020). Additionally, in models of HD and ALS, specifically mutant TDP-43A315T and mutant FUS5 Caenorhabditis elegans, L. rhamnosus exerted neuroprotective effects via the regulation of fatty acid metabolism (Labarre et al., 2022) (Table 3).

Table 3 Overview of the therapeutic effects of L. rhamnosus on NDDs

DiseaseResearch typesStrainModelDoseKey effectsRef
ADin vivoL. rhamnosusD-galactose injected rats12×108 CFU/mL (10 mL/kg) for 5 weeks- Improvement in cognitive function
- Reduction of inflammatory cytokines in the brain
Heydari et al., 2025
in vivoL. rhamnosusAlCl3-injected rats1×106 CFU/mouse for 5 weeks- Inhibition of p-tau and Aβ accumulation in the brain
- Improvement in cognitive function
- Regulation of liver inflammation and fibrosis-related markers
Abu-Elfotuh et al., 2023
in vivoL. rhamnosus GGNoise-induced rats1×108 CFU/mouse for 56 days- Alleviation of memory impairment
- Restoration of gut microbiota balance
- Improvement in serum Aβ and inflammation levels
Li et al., 2023
in vivoL. rhamnosus UBLR-58Scopolamine-injected mice1×106 CFU/mouse for 10 days- Improvement in cognitive function
- Protection of neurons in the brain
Patel et al., 2020
RCTL. rhamnosus HA-114Patients with AD1×1015 CFU twice daily for 12 weeks- Improvement in total MMSE scores
- Increase in CFT scores
- Improvement in GAD-7 scores
Akhgarjand et al., 2022
PDin vivoL. rhamnosus E9MPTP-injected mice1×108 CFU/mL (0.1 mL/mouse) for 10 days- Alleviation of motor dysfunction
- Protection of neurons and increase in dopamine levels in the brain
- Reduction of intestinal barrier damage and restoration of gut microbiota balance
Aktas et al., 2024
in vivoL. rhamnosus HA-1146-OHDA-injected rats1×108 and 109 CFU/mouse for 6 weeks- Recovery of hippocampal-dependent cognitive deficitsXie and Prasad, 2020
HD/ ALSin vivoL. rhamnosus HA-114Mutant
TDP-43A315T, mutant FUSS57Δ
C. elegans
-- Neuroprotective effects through the regulation of fatty acid metabolism genesLabarre et al., 2022

AD, Alzheimer’s disease; L. rhamnosus, Lactobacillus rhamnosus; CFU, colony forming unit; Aβ, Amyloid β; RCT, Randomized controlled trial; MMSE, Mini-Mental State Examination; CFT, Categorical verbal fluency test; GAD-7, Generalized Anxiety Disorder-7; PD, Parkinson’s disease; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 6-OHDA, 6-Hydroxydopamine; HD, Huntington’s disease; ALS, Amyotrophic lateral sclerosis; TDP-43, TAR DNA-binding protein-43; FUS, Fused in Sarcoma; C. elegans, Caenorhabditis elegans.



Clostridium butyricum

Clostridium butyricum (C. butyricum), an anaerobic bacterium known for its ability to produce butyrate and form spores, has been safely used as a probiotic for decades (Cassir et al., 2016). This bacterium is found in various environments including soil, fermented dairy products, and vegetables. C. butyricum is recognized for its efficacy against various diseases, particularly its therapeutic effects against NDDs.

In animal models of AD, C. butyricum improves cognitive function while inhibiting neuroinflammation and the accumulation of Aβ (Sun et al., 2020). Su et al. proposed a mechanism of action for C. butyricum, demonstrating that it reduces the expression of Toll-like receptor 4 and nuclear factor kappa B in both the brain and gut (Su et al., 2023). In PD models, C. butyricum improved motor function and protected neurons in MPTP-induced mice (Wang et al., 2023). It also helps regulate imbalances in the gut microbiota. Sun et al. provided evidence that C. butyricum restores the levels of GLP-1 receptors that had been damaged by MPTP in both the brain and gut, supporting its therapeutic mechanisms (Sun et al., 2021a). Finally, C. butyricum has been shown to increase microbial diversity in the gut and regulate p38 and c-Jun N-terminal kinases in the spinal cord of mice with EAE, which is a model for MS (Chen et al., 2019). Thus, C. butyricum has demonstrated significant therapeutic effects and elucidated mechanisms in various NDDs (Table 4).

Table 4 Overview of the therapeutic effects of C. butyricum on NDDs

DiseaseResearch typesStrainModelDoseKey effectsRef
ADin vivoC. butyricumICV-STZ-injected mice2×108 CFU/mouse for 21 days- Improvement in cognitive impairment
- Protection of neurons and reduction of p-tau levels in the brain
- Decreased expression of TLR4, MYD88, and NF-κB p65 in the brain and gut
- Alleviation of intestinal barrier damage
Su et al., 2023
in vivoC. butyricumAPP/PS1 mice1×109 CFU/mL (0.2 mL/mouse) for 4 weeks- Improvement in cognitive function
- Inhibition of Aβ accumulation and neuroinflammation
Sun et al., 2020
PDin vivoC. butyricum NCU-02MPTP-injected mice1×109 CFU/mL for 7 days- Alleviation of motor dysfunction
- Protection of neurons and reduction of α-synuclein levels
- Improvement in gut microbiota imbalance
Wang et al., 2023
in vivoC. butyricum WZMC1016MPTP-injected mice5×108 CFU/mouse for 4 weeks- Improvement in motor dysfunction
- Protection of neurons and enhancement of synaptic function
- Inhibition of neuroinflammation
- Restoration of gut microbiota balance
- Recovery of GLP-1 receptor levels in the gut and brain
Sun et al., 2021a
MSin vivoC. butyricumEAE-injected mice5×105 or 106 or 107 CFU/mL (0.2 mL/mouse) for 3 weeks- Increase in the diversity of gut microbiota composition
- Decrease in Th17 response and increase in Treg response
- Reduction in p38 and JNK activation in the spinal cord
Chen et al., 2019

AD, Alzheimer’s disease; C. butyricum, Clostridium butyricum; ICV-STZ, Intracerebroventricularly-streptozotocin; CFU, colony forming unit; TLR-4, Toll-like receptor 4; MYD88, Myeloid differentiation primary response 88; NF-κB, Nuclear factor kappa B; Aβ, Amyloid β; PD, Parkinson’s disease; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; GLP-1, Glucagon-Like Peptide 1; MS, Multiple sclerosis; EAE, Experimental autoimmune encephalomyelitis; JNK, c-Jun N-terminal kinases.



Multi-strain probiotics

Probiotics are generally applied as combinations of various bacterial strains, rather than individually. Although not all multi-probiotic formulations consistently demonstrate enhanced effects, prior in vitro studies have indicated that some multi-strain probiotics may offer greater benefits than single-strain probiotics (Kwoji et al., 2021). Consequently, extensive research has been conducted on multiple prebiotic combinations. Among these, L. plantarum and Lactobacillus acidophilus (L. acidophilus) have frequently been used to treat NDDs.

As previously mentioned, L. plantarum is abundant in many food sources, including dairy products and milk, and can also be found in the gastrointestinal tract. In contrast, although L. acidophilus is less common in dairy products, it is widely distributed in the gastrointestinal tract and exhibits excellent resistance to acid and bile salts (Gao et al., 2022).

Sahu et al. demonstrated that a complex probiotic formulation containing L. plantarum, L. acidophilus, Lactobacillus delbrueckii subsp. Bulgaricus, Lactobacillus paracasei, B. breve, Bifidobacterium longum, Bifidobacterium infantis, and Streptococcus salivarius subsp (Sahu et al., 2023). Thermophilus effectively inhibited neuroinflammation and Aβ accumulation in AppNL-G-F mice induced by colitis-associated AD. Additionally, Ghalandari et al. conducted an RCT involving patients with PD, finding that a combination of L. plantarum, L. acidophilus, Lactobacillus casei, Lactobacillus bulgaricus, Bifidobacterium infantis, Bifidobacterium longum, B. breve, and Streptococcus thermophilus positively affected the frequency of bowel movements in patients with PD, although they did not significantly influence motor function (Ghalandari et al., 2023).

Moreover, Zhang et al. found that probiotics containing L. plantarum and L. acidophilus maintained the gut barrier integrity and neuromuscular function, while clearing protein aggregates in an ALS mouse model (Zhang et al., 2024b). Farber et al. further demonstrated in an RCT involving patients with MS that probiotics, including L. plantarum and L. acidophilus, improved overall symptoms and enhanced gut regulation (Straus Farber et al., 2024).

As such, combinations of various probiotics show promise for the treatment of NDDs, particularly combinations of L. plantarum and L. acidophilus, which are frequently present in probiotic formulations.

Other Species

In addition to the aforementioned strains, various probiotics have demonstrated notable therapeutic potential in the treatment of NDDs. Among these, Lactobacillus acidophilus (L. acidophilus), commonly found in multi-strain probiotic formulations, is frequently included in combined preparations, although its effects as a single strain have not been extensively studied. Nevertheless, this bacterium has shown promise in the treatment of conditions such as AD, PD, and ALS, with some effects validated in clinical studies (Yang et al., 2020; Sancandi et al., 2022; Xiao-Hang et al., 2024; Zhang et al., 2024b).

Studies of AD involving various strains, such as Bifidobacterium longum, Lactobacillus paracasei, and Bifidobacterium lactis, have shown significant effects in both in vivo and clinical studies (Cao et al., 2021; Li et al., 2022; Parra et al., 2023). However, Lactococcus lactis (L. lactis) is a unique strain commonly engineered for therapeutic applications in PD (Fang et al., 2020; Pan et al., 2022; Yue et al., 2022). In prior studies, L. lactis has been engineered to modulate in MPTP-induced mouse models as a strain engineered to modulate GLP-1. This engineered probiotic effectively regulates GLP-1, a key factor in the gut-brain axis, resulting in improvements not only in motor function but also in non-motor symptoms of PD, such as cognitive function.

Lactobacillus casei (L. casei) has been shown to be effective at reducing demyelination and inflammation in MS, particularly in cuprizone-induced mouse models, by modulating inflammasome activity (Digehsara et al., 2021; Gharehkhani Digehsara et al., 2021). Other strains, such as Lactobacillus reuteri and Streptococcus thermophilus, have also demonstrated benefits against MS by reducing demyelination, underscoring ongoing research on effective probiotics for this condition (Dargahi et al., 2020; He et al., 2019; Montgomery et al., 2022).

While several prior studies have focused on ALS and HD, Labarre et al. showed that probiotics in C. elegans models of these diseases could improve lipid homeostasis and protect neurons via β-oxidation regulation (Labarre et al., 2022). This study highlights the emerging therapeutic role of probiotics in NDDs, and supports the further investigation of strain-specific effects for targeted treatments. Thus, current research on probiotics is most actively focused on AD and PD among the NDDs, whereas studies on other NDDs are still in their early stages (Table 5).

Table 5 Overview of the key probiotics with therapeutic potential in NDDs

DiseaseStrainRefClinical trials
(U.S FDA)
in vivo studyClinical study
Used as a single strainUsed as part of a multi-strain mixtureUsed as a single strainUsed as part of a multi-strain mixture
ADA. muciniphilaOu et al., 2020; He et al., 2022; Qu et al., 2023; Maftoon et al., 2024n.a.n.a.n.a.n.a.
B. animalisn.a.Sun et al., 2021b; Hamid and Zahid, 2023; Lee et al., 2023; Webberley et al., 2023n.a.Fei et al., 2023n.a.
B. breveKobayashi et al., 2017; Abdelhamid et al., 2022a, 2022b; Ohno et al., 2022; Bernier et al., 2023; Zhu et al., 2023; Abdelhamid et al., 2024Bonfili et al., 2018; Kaur et al., 2020; Deng et al., 2022; Sahu et al., 2023Kobayashi et al., 2019a, 2019b; Xiao et al., 2020; Bernier et al., 2021; Asaoka et al., 2022Hsu et al., 2023Early Phase 1 (NCT06181513)
B. lactisBalaguer et al., 2023; Choi et al., 2024Athari Nik Azm et al., 2018; Bonfili et al., 2020; Yang et al., 2020; Bonfili et al., 2021; Cao et al., 2021; Yang et al., 2023b; Kim et al., 2024; Xiao-Hang et al., 2024n.a.Fei et al., 2023; Hsu et al., 2023n.a.
B. longumLee et al., 2019Athari Nik Azm et al., 2018; Bonfili et al., 2018; Mohammadi et al., 2019; Rezaei Asl et al., 2019; Rezaeiasl et al., 2019; Kaur et al., 2020; Kim et al., 2021b; Lee et al., 2021a; Sun et al., 2021b; Deng et al., 2022; Ma et al., 2023a; Sahu et al., 2023Akhgarjand et al., 2022; Shi et al., 2022Tamtaji et al., 2019a; Kim et al., 2021a; Akhgarjand et al., 2024n.a.
L. acidophilusBeltagy et al., 2021Athari Nik Azm et al., 2018; Bonfili et al., 2018; Rezaei Asl et al., 2019; Rezaeiasl et al., 2019; Bonfili et al., 2020; Kaur et al., 2020; Yang et al., 2020; Bonfili et al., 2021; Deng et al., 2022; Sahu et al., 2023; Webberley et al., 2023; Yang et al., 2023b; Xiao-Hang et al., 2024n.a.Akbari et al., 2016; Agahi et al., 2018; Tamtaji et al., 2019a; Fei et al., 2023n.a.
L. brevisn.a.Bonfili et al., 2018, 2020, 2021; Lee et al., 2023; Kim et al., 2024n.a.n.a.n.a.
L. paracaseiSmith et al., 2022; Kumaree et al., 2023Bonfili et al., 2018, 2020; Kaur et al., 2020; Bonfili et al., 2021; Sahu et al., 2023; Lana et al., 2024; Traini et al., 2024n.a.Fei et al., 2023Early Phase 1 (NCT06181513)
L. plantarumWoo et al., 2014; Nimgampalle and Kuna, 2017; Cheon et al., 2021; Song et al., 2022; Wang et al., 2022b; Di Salvo et al., 2024; Hu et al., 2024a; Nie et al., 2024Bonfili et al., 2018, 2020; Kaur et al., 2020; Tan et al., 2020; Lee et al., 2021a; Shamsipour et al., 2021; Sun et al., 2021b; Sahu et al., 2023; Webberley et al., 2023; Wu et al., 2023b; Medeiros et al., 2024; Zaki et al., 2024n.a.Bartos et al., 2023; Fei et al., 2023; Hsu et al., 2023Early Phase 1 (NCT06181513)
L. rhamnosusPatel et al., 2020; Abu-Elfotuh et al., 2023; Heydari et al., 2025Mehrabadi and Sadr, 2020; Hamid and Zahid, 2023; Foster et al., 2024; Lana et al., 2024; Traini et al., 2024; Xiao-Hang et al., 2024Sanborn et al., 2018; Akhgarjand et al., 2022Fei et al., 2023; Akhgarjand et al., 2024Early Phase 1 (NCT06181513)
S. thermophilusZhang et al., 2024aBonfili et al., 2018, 2020, 2021Bartos et al., 2023
PDB. bifidumn.a.Hsieh et al., 2020; Alipour Nosrani et al., 2021; Ilie et al., 2022n.a.Borzabadi et al., 2018; Neiworth-Petshow and Baldwin-Sayre, 2018; Tamtaji et al., 2019b; Tan et al., 2021Phase 2 (NCT03968133)
B. breveValvaikar et al., 2024Ishii et al., 2021; Li et al., 2022; Zhou et al., 2023n.a.Barichella et al., 2016; Magistrelli et al., 2019; Ghalandari et al., 2023n.a.
B. lactisn.a.Srivastav et al., 2019; Castelli et al., 2020; Cuevas-Carbonell et al., 2022; Ilie et al., 2022; Parra et al., 2023n.a.Barichella et al., 2016; Neiworth-Petshow and Baldwin-Sayre, 2018; Magistrelli et al., 2019; Sun et al., 2022Phase 2 (NCT03968133)
C. butyricumSun et al., 2021a; Fan et al., 2023; Wang et al., 2023; Wu et al., 2023an.a.n.a.n.a.n.a.
L. acidophilusn.a.Srivastav et al., 2019; Castelli et al., 2020; Alipour Nosrani et al., 2021; Ilie et al., 2022; Sancandi et al., 2022; Zhou et al., 2023n.a.Barichella et al., 2016; Borzabadi et al., 2018; Neiworth-Petshow and Baldwin-Sayre, 2018; Magistrelli et al., 2019; Tamtaji et al., 2019b; Ibrahim et al., 2020; Ghyselinck et al., 2021; Tan et al., 2021; Du et al., 2022; Ghalandari et al., 2023; Zali et al., 2024Phase 4 (NCT04871464) & Phase 2 (NCT03968133)
L. fermentumMarsova et al., 2020Alipour Nosrani et al., 2021; Napoles-Medina et al., 2023n.a.Borzabadi et al., 2018; Tamtaji et al., 2019b
L. lactisFang et al., 2020; Pan et al., 2022; Yue et al., 2022Hsieh et al., 2020; Hawrysh et al., 2023n.a.Ibrahim et al., 2020Phase 2 (NCT03968133)
L. paracasein.a.Castelli et al., 2020; Ilie et al., 2022; Zhou et al., 2023n.a.Yang et al., 2023a; Zali et al., 2024n.a.
L. plantarumCheon et al., 2021; Wang et al., 2022a; Chu et al., 2023; Ma et al., 2023b; Qi et al., 2024Castelli et al., 2020; Hsieh et al., 2020; Perez Visnuk et al., 2020; Ilie et al., 2022; Sancandi et al., 2022; Napoles-Medina et al., 2023; Zhou et al., 2023; Perez Visnuk et al., 202434277679 (Lu et al., 2021)Barichella et al., 2016; Neiworth-Petshow and Baldwin-Sayre, 2018; Magistrelli et al., 2019; Ghyselinck et al., 2021; Ghalandari et al., 2023n.a.
L. rhamnosusXie and Prasad, 2020; Aktas et al., 2024Srivastav et al., 2019; Hsieh et al., 2020; Cuevas-Carbonell et al., 2022; Sancandi et al., 2022; Parra et al., 2023n.a.Barichella et al., 2016; Neiworth-Petshow and Baldwin-Sayre, 2018; Magistrelli et al., 2019; Ghyselinck et al., 2021; Tan et al., 2021; Zali et al., 2024n.a.
S. thermophilusCastelli et al., 2020; Perez Visnuk et al., 2020; Zhou et al., 2023; Perez Visnuk et al., 2024n.a.Barichella et al., 2016; Neiworth-Petshow and Baldwin-Sayre, 2018; Ghalandari et al., 2023n.a.
MSB. breveHasaniani et al., 2024n.a.n.a.Tankou et al., 2018; Rahimlou et al., 2022a, 2022b; Moravejolahkami et al., 2023; Straus Farber et al., 2024n.a.
B. infantisn.a.n.a.n.a.Tankou et al., 2018; Rahimlou et al., 2022a, 2022b; Moravejolahkami et al., 2023; Straus Farber et al., 2024n.a.
B. longumn.a.n.a.n.a.Tankou et al., 2018; Rahimlou et al., 2022a, 2022b; Moravejolahkami et al., 2023; Straus Farber et al., 2024n.a.
L. acidophilusRen et al., 2021n.a.n.a.Kouchaki et al., 2017; Tankou et al., 2018; Rahimlou et al., 2022a; Rahimlou et al., 2022b; Moravejolahkami et al., 2023; Straus Farber et al., 2024n.a.
L. bulgaricusn.a.n.a.n.a.Tankou et al., 2018; Rahimlou et al., 2022a, 2022b; Moravejolahkami et al., 2023; Straus Farber et al., 2024n.a.
L. caseiDigehsara et al., 2021; Gharehkhani Digehsara et al., 2021Samani et al., 2022n.a.Kouchaki et al., 2017; Rahimlou et al., 2022a, 2022b; Moravejolahkami et al., 2023n.a.
L. paracasein.a.Lavasani et al., 2010n.a.Tankou et al., 2018; Chakamian et al., 2023; Straus Farber et al., 2024n.a.
L. plantarumSajedi et al., 2021, 2023Lavasani et al., 2010; Salehipour et al., 2017; Samani et al., 2022n.a.Tankou et al., 2018; Rahimlou et al., 2022a, 2022b; Chakamian et al., 2023; Moravejolahkami et al., 2023; Straus Farber et al., 2024n.a.
L. reuteriHe et al., 2019; Montgomery et al., 2022n.a.n.a.n.a.n.a.
L. rhamnosusn.a.Samani et al., 2022n.a.Rahimlou et al., 2022a, 2022bn.a.
S. thermophilusDargahi et al., 2020n.a.n.a.Tankou et al., 2018; Rahimlou et al., 2022a, 2022b; Moravejolahkami et al., 2023; Straus Farber et al., 2024n.a.
ALSB. breven.a.Zhang et al., 2024bn.a.n.a.n.a.
B. infantisn.a.Zhang et al., 2024bn.a.n.a.n.a.
B. longumn.a.Xin et al., 2024; Zhang et al., 2024bn.a.n.a.n.a.
E. faeciumn.a.Xin et al., 2024n.a.n.a.n.a.
L. acidophilusn.a.Xin et al., 2024; Zhang et al., 2024bn.a.n.a.n.a.
L. helveticusn.a.Zhang et al., 2024bn.a.n.a.n.a.
L. paracasein.a.Zhang et al., 2024bn.a.n.a.n.a.
L. plantarumn.a.Zhang et al., 2024bn.a.n.a.n.a.
L. rhamnosusLabarre et al., 2022n.a.n.a.n.a.n.a.
S. thermophilusn.a.Zhang et al., 2024bn.a.n.a.n.a.
HDL. rhamnosusLabarre et al., 2022n.a.n.a.n.a.n.a.

FDA, Food and Drug Administration; AD, Alzheimer’s disease; A. muciniphila, Akkermansia muciniphila; B. animalis, Bifidobacterium animalis; B. breve, Bifidobacterium breve; B. lactis, Bifidobacterium animalis subsp. lactis; B. longum, Bifidobacterium longum; L. acidophilus, Lactobacillus acidophilus; L. brevis, Levilactobacillus brevis; L. paracasei, Lacticaseibacillus paracasei; L. plantarum, Lactiplantibacillus plantarum; L. rhamnosus, Lacticaseibacillus rhamnosus; S. thermophilus, Streptococcus thermophilus; PD, Parkinson’s disease; B. infantis, Bifidobacterium infantis; C. butyricum, Clostridium butyricum; L. fermentum, Lactobacillus fermentum; L. lactis, Lactococcus lactis; MS, Multiple sclerosis; L. bulgaricus, Lactobacillus bulgaricus; L. casei, Lacticaseibacillus casei; L. reuteri, Lactobacillus reuteri; ALS, Amyotrophic lateral sclerosis; E. faecium, Enterococcus faecium; L. helveticus, Lactobacillus helveticus; HD, Huntington’s disease.


PROBIOTICS CURRENTLY UNDERGOING CLINICAL TRIALS FOR THE TREATMENT OF NDDS

The clinical trial progression for NDDs treatments based on U.S. FDA guidelines is briefly summarized in Table 6. Currently, probiotic formulations in the NDD category are being developed as therapeutic agents for AD and PD. For AD, excluding those marked as not applicable, the highest reported trial phase was Phase 1, which involved a combination of Lactobacillus paracasei, L. plantarum, L. rhamnosus, Lactobacillus helveticus, and B. breve.

Table 6 Probiotics currently undergoing clinical trials for the treatment of NDDs (https://clinicaltrials.gov/)

DiseasePhaseStrainIndicationDoseCountryID
ADEarly
Phase 1
Mixture of L. paracasei, L. plantarum, L. rhamnosus, L. helveticus, B. breveCognitive function and neuroinflammation
in patients with mild AD
2.0×107 CFU/day for 16 weeksCyprusNCT06181513
PDPhase 4Mixture of B. longum, L. acidophilus, E. faecalisOn motor symptoms and constipation and sleep in mild to moderate PD≥1.0×107 CFU/capsule 2 capsules twice daily; Day 15-24 weeks, 4 capsules twice dailyChinaNCT04871464
Phase 3Mixture of Lactobacillus spp., Bifidobacterium spp., fructo-oligosaccarideOn constipation and whole gut transit time in patients with PD30×109 CFU/day twice daily for 8 weeksMalaysiaNCT04451096
Phase 2Mixture of B. bifidum W23, B. lactis W51, B. lactis W52, L. acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, L. lactis W19, L. lactis W58Anxiety in patients with PD5.0×109 CFU/day for 12 weeksCanadaNCT03968133
Phase 2Mixture of B. bifidum W23, B. lactis W51, B. lactis W52, L. acidophilus W37, L. brevis W63, L. casei W56, L. salivarius W24, L. lactis W19, L. lactis W58Depression in patients with PD5.0×109 CFU/day for 12 weeksCanadaNCT05568498

AD, Alzheimer’s disease; L. paracasei, Lacticaseibacillus paracasei; L. plantarum, Lactiplantibacillus plantarum; L. rhamnosus, Lacticaseibacillus rhamnosus; L. helveticus, Lactobacillus helveticus; B. breve, Bifidobacterium breve; CFU, colony forming unit; B. longum, Bifidobacterium longum; L. acidophilus, Lactobacillus acidophilus; E. faecalis, Enterococcus faecalis; B. bifidum, Bifidobacterium bifidum; B. lactis, Bifidobacterium animalis subsp. lactis; L. acidophilus, Lactobacillus acidophilus; L. brevis, Levilactobacillus brevis; L. casei, Lacticaseibacillus casei; L. salivarius, Lactobacillus salivarius; L. lactis, Lactococcus lactis.



In the case of PD, a broader range of probiotic formulations are undergoing clinical trials, with one in Phase 4, one in Phase 3, two in Phase 2, and the remainder at “Not applicable.” The Phase 4 trial focused on Bifidobacterium triple viable capsules containing Bifidobacterium longum, L. acidophilus, and Enterococcus faecalis, which are anticipated to improve motor symptoms and alleviate constipation in patients with mild-to-severe PD. The Phase 3 formulation consisted of a probiotic-prebiotic blend that included Lactobacillus spp., Bifidobacterium spp., and fructo-oligosaccharides. These findings reflect a proactive effort to develop NDD treatments using probiotics, with PD receiving a particularly high level of interest following advancements in probiotic formulations, with many treatments currently moving through various trial phases.

CONCLUSIONS AND FUTURE PERSPECTIVES

Overall, in recent years, the MGB axis has emerged as a critical component of the pathophysiology and treatment of NDDs. Increasing evidence suggests that alterations in the gut microbiota can influence neuroinflammation, protein aggregation, and overall neural function, all of which are key factors in the progression of NDD. Probiotics, as modulators of the gut microbiota, offer a unique therapeutic approach, particularly diseases such as AD and PD, for which preclinical and clinical data have shown encouraging results.

More extensive research on the role of the MGB axis in NDDs is crucial, particularly to explore how gut dysbiosis can influence disease onset and progression through mechanisms such as neuroinflammation and immune activation. Additionally, understanding the specific effects of different probiotic strains on the MGB axis will be key to optimizing strain selection and dosage for targeted therapeutic outcomes. Investigations should further focus on the impact of probiotics on gut-derived inflammatory mediators, gut permeability, and their interplay with key pathological markers such as Aβ, tau, α-syn, and TDP-43 across different NDDs.

In conclusion, although significant progress has been made in our understanding of the potential of probiotics to modulate the gut-brain axis, translating these findings into effective NDD therapies will require robust clinical trials and mechanistic insights. With careful optimization of multi-strain formulations and deeper exploration of the MGB axis, probiotics have the potential to redefine therapeutic strategies for NDDs by targeting the microbiome as a core component of neuroprotection.

ACKNOWLEDGMENTS

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2024-00412556). This study was also supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grand number: HI23C1263).

References
  1. Abdelhamid, M., Jung, C. G., Zhou, C., Inoue, R., Chen, Y., Sento, Y., Hida, H. and Michikawa, M. (2024) Potential therapeutic effects of Bifidobacterium breve MCC1274 on Alzheimer's disease pathologies in app(NL-G-F) mice. Nutrients 16, 538.
    Pubmed KoreaMed CrossRef
  2. Abdelhamid, M., Zhou, C., Jung, C. G. and Michikawa, M. (2022a) Probiotic Bifidobacterium breve MCC1274 mitigates Alzheimer's disease-related pathologies in wild-type mice. Nutrients 14, 2543.
    Pubmed KoreaMed CrossRef
  3. Abdelhamid, M., Zhou, C., Ohno, K., Kuhara, T., Taslima, F., Abdullah, M., Jung, C. G. and Michikawa, M. (2022b) Probiotic Bifidobacterium breve prevents memory impairment through the reduction of both amyloid-beta production and microglia activation in APP knock-in mouse. J. Alzheimers Dis. 85, 1555-1571.
    Pubmed KoreaMed CrossRef
  4. Abu-Elfotuh, K., Selim, H., Riad, O. K. M., Hamdan, A. M. E., Hassanin, S. O., Sharif, A. F., Moustafa, N. M., Gowifel, A. M. H., Mohamed, M. Y. A., Atwa, A. M., Zaghlool, S. S. and El-Din, M. N. (2023) The protective effects of sesamol and/or the probiotic, Lactobacillus rhamnosus, against aluminum chloride-induced neurotoxicity and hepatotoxicity in rats: Modulation of Wnt/beta-catenin/GSK-3beta, JAK-2/STAT-3, PPAR-gamma, inflammatory, and apoptotic pathways. Front. Pharmacol. 14, 1208252.
    Pubmed KoreaMed CrossRef
  5. Adamske, D., Heyduck, A., Weidenmuller, M., Goricke, B., Frank, T. and Olthoff, A. (2021) Dysphagia in amyotrophic lateral sclerosis: Quantification of bulbar motor dysfunction. J. Oral. Rehabil. 48, 1044-1049.
    Pubmed CrossRef
  6. Agahi, A., Hamidi, G. A., Daneshvar, R., Hamdieh, M., Soheili, M., Alinaghipour, A., Esmaeili Taba, S. M. and Salami, M. (2018) Does severity of Alzheimer's disease contribute to its responsiveness to modifying gut microbiota? A double blind clinical trial. Front. Neurol. 9, 662.
    Pubmed KoreaMed CrossRef
  7. Akbari, E., Asemi, Z., Daneshvar Kakhaki, R., Bahmani, F., Kouchaki, E., Tamtaji, O. R., Hamidi, G. A. and Salami, M. (2016) Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer's disease: a randomized, double-blind and controlled trial. Front. Aging Neurosci. 8, 256.
    Pubmed KoreaMed CrossRef
  8. Akhgarjand, C., Vahabi, Z., Shab-Bidar, S., Anoushirvani, A. and Djafarian, K. (2024) The effects of probiotic supplements on oxidative stress and inflammation in subjects with mild and moderate Alzheimer's disease: a randomized, double-blind, placebo-controlled study. Inflammopharmacology 32, 1413-1420.
    Pubmed CrossRef
  9. Akhgarjand, C., Vahabi, Z., Shab-Bidar, S., Etesam, F. and Djafarian, K. (2022) Effects of probiotic supplements on cognition, anxiety, and physical activity in subjects with mild and moderate Alzheimer's disease: a randomized, double-blind, and placebo-controlled study. Front. Aging Neurosci. 14, 1032494.
    Pubmed KoreaMed CrossRef
  10. Aktas, B., Aslim, B. and Ozdemir, D. A. (2024) A neurotherapeutic approach with Lacticaseibacillus rhamnosus E9 on gut microbiota and intestinal barrier in MPTP-induced mouse model of Parkinson's disease. Sci. Rep. 14, 15460.
    Pubmed KoreaMed CrossRef
  11. Alipour Nosrani, E., Tamtaji, O. R., Alibolandi, Z., Sarkar, P., Ghazanfari, M., Azami Tameh, A., Taghizadeh, M., Banikazemi, Z., Hadavi, R. and Naderi Taheri, M. (2021) Neuroprotective effects of probiotics bacteria on animal model of Parkinson's disease induced by 6-hydroxydopamine: a behavioral, biochemical, and histological study. J. Immunoassay Immunochem. 42, 106-120.
    Pubmed CrossRef
  12. Antony, P. M., Diederich, N. J., Kruger, R. and Balling, R. (2013) The hallmarks of Parkinson's disease. FEBS J. 280, 5981-5993.
    Pubmed CrossRef
  13. Asaoka, D., Xiao, J., Takeda, T., Yanagisawa, N., Yamazaki, T., Matsubara, Y., Sugiyama, H., Endo, N., Higa, M., Kasanuki, K., Ichimiya, Y., Koido, S., Ohno, K., Bernier, F., Katsumata, N., Nagahara, A., Arai, H., Ohkusa, T. and Sato, N. (2022) Effect of probiotic bifidobacterium breve in improving cognitive function and preventing brain atrophy in older patients with suspected mild cognitive impairment: results of a 24-week randomized, double-blind, placebo-controlled trial. J. Alzheimers Dis. 88, 75-95.
    Pubmed KoreaMed CrossRef
  14. Athari Nik Azm, S., Djazayeri, A., Safa, M., Azami, K., Ahmadvand, B., Sabbaghziarani, F., Sharifzadeh, M. and Vafa, M. (2018) Lactobacilli and bifidobacteria ameliorate memory and learning deficits and oxidative stress in beta-amyloid (1-42) injected rats. Appl. Physiol. Nutr. Metab. 43, 718-726.
    Pubmed CrossRef
  15. Balaguer, F., Barrena, M., Enrique, M., Maicas, M., Alvarez, B., Tortajada, M., Chenoll, E., Ramon, D. and Martorell, P. (2023) Bifidobacterium animalis subsp. lactis BPL1 and its lipoteichoic acid modulate longevity and improve age/stress-related behaviors in Caenorhabditis elegans. Antioxidants (Basel) 12, 2107.
    Pubmed KoreaMed CrossRef
  16. Barichella, M., Pacchetti, C., Bolliri, C., Cassani, E., Iorio, L., Pusani, C., Pinelli, G., Privitera, G., Cesari, I., Faierman, S.A., Caccialanza, R., Pezzoli, G. and Cereda, E. (2016) Probiotics and prebiotic fiber for constipation associated with Parkinson disease: an RCT. Neurology 87, 1274-1280.
    Pubmed CrossRef
  17. Bartos, A., Weinerova, J. and Diondet, S. (2023) Effects of human probiotics on memory and psychological and physical measures in community-dwelling older adults with normal and mildly impaired cognition: results of a bi-center, double-blind, randomized, and placebo-controlled clinical trial (CleverAge biota). Front. Aging Neurosci. 15, 1163727.
    Pubmed KoreaMed CrossRef
  18. Beltagy, D. M., Nawar, N. F., Mohamed, T. M., Tousson, E. and El-Keey, M. M. (2021) Beneficial consequences of probiotic on mitochondrial hippocampus in Alzheimer's disease. J. Complement. Integr. Med. 18, 761-767.
    Pubmed CrossRef
  19. Bernier, F., Kuhara, T. and Xiao, J. (2023) Probiotic Bifidobacterium breve MCC1274 protects against oxidative stress and neuronal lipid droplet formation via PLIN4 gene regulation. Microorganisms 11, 791.
    Pubmed KoreaMed CrossRef
  20. Bernier, F., Ohno, K., Katsumata, N., Shimizu, T. and Xiao, J. (2021) Association of plasma hemoglobin A1c with improvement of cognitive functions by probiotic Bifidobacterium breve supplementation in healthy adults with mild cognitive impairment. J. Alzheimers Dis. 81, 493-497.
    Pubmed KoreaMed CrossRef
  21. Bonfili, L., Cecarini, V., Cuccioloni, M., Angeletti, M., Berardi, S., Scarpona, S., Rossi, G. and Eleuteri, A. M. (2018) SLAB51 probiotic formulation activates SIRT1 pathway promoting antioxidant and neuroprotective effects in an AD mouse model. Mol. Neurobiol. 55, 7987-8000.
    Pubmed KoreaMed CrossRef
  22. Bonfili, L., Cecarini, V., Gogoi, O., Berardi, S., Scarpona, S., Angeletti, M., Rossi, G. and Eleuteri, A. M. (2020) Gut microbiota manipulation through probiotics oral administration restores glucose homeostasis in a mouse model of Alzheimer's disease. Neurobiol. Aging 87, 35-43.
    Pubmed CrossRef
  23. Bonfili, L., Gong, C., Lombardi, F., Cifone, M. G. and Eleuteri, A. M. (2021) Strategic modification of gut microbiota through oral bacteriotherapy influences hypoxia inducible factor-1alpha: therapeutic implication in Alzheimer's disease. Int. J. Mol. Sci. 23, 357.
    Pubmed KoreaMed CrossRef
  24. Borzabadi, S., Oryan, S., Eidi, A., Aghadavod, E., Daneshvar Kakhaki, R., Tamtaji, O. R., Taghizadeh, M. and Asemi, Z. (2018) The effects of probiotic supplementation on gene expression related to inflammation, insulin and lipid in patients with Parkinson's disease: a randomized, double-blind, placebocontrolled trial. Arch. Iran. Med. 21, 289-295.
  25. Boxer, A. L. and Sperling, R. (2023) Accelerating Alzheimer's therapeutic development: the past and future of clinical trials. Cell 186, 4757-4772.
    Pubmed KoreaMed CrossRef
  26. Braak, H., Rub, U., Gai, W.P. and Del Tredici, K. (2003) Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. (Vienna) 110, 517-536.
    Pubmed CrossRef
  27. Cao, J., Amakye, W. K., Qi, C., Liu, X., Ma, J. and Ren, J. (2021) Bifidobacterium Lactis Probio-M8 regulates gut microbiota to alleviate Alzheimer's disease in the APP/PS1 mouse model. Eur. J. Nutr. 60, 3757-3769.
    Pubmed CrossRef
  28. Cassir, N., Benamar, S. and La Scola, B. (2016) Clostridium butyricum: from beneficial to a new emerging pathogen. Clin. Microbiol. Infect. 22, 37-45.
    Pubmed CrossRef
  29. Castelli, V., Angelo, M., Lombardi, F., Alfonsetti, M., Antonosante, A., Catanesi, M., Benedetti, E., Palumbo, P., Cifone, M. G., Giordano, A., Desideri, G. and Cimini, A. (2020) Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson's disease models. Aging (Albany N.Y.) 12, 4641-4659.
    Pubmed KoreaMed CrossRef
  30. Chakamian, K., Robat-Jazi, B., Naser Moghadasi, A., Mansouri, F., Nodehi, M., Motevaseli, E., Izad, M., Yekaninejad, S., Shirzad, M., Bidad, K., Oraei, M., Ansaripour, B. and Saboor-Yaraghi, A. A. (2023) Immunosuppressive effects of two probiotics, Lactobacillus paracasei DSM 13434 and Lactobacillus plantarum DSM 15312, on CD4+ T cells of multiple sclerosis patients. Iran. J. Allergy Asthma Immunol. 22, 34-45.
    Pubmed CrossRef
  31. Chen, H., Ma, X., Liu, Y., Ma, L., Chen, Z., Lin, X., Si, L., Ma, X. and Chen, X. (2019) Gut microbiota interventions with Clostridium butyricum and norfloxacin modulate immune response in experimental autoimmune encephalomyelitis mice. Front. Immunol. 10, 1662.
    Pubmed KoreaMed CrossRef
  32. Cheon, M. J., Lee, N. K. and Paik, H. D. (2021) Neuroprotective effects of heat-killed Lactobacillus plantarum 200655 isolated from kimchi against oxidative stress. Probiotics Antimicrob. Proteins 13, 788-795.
    Pubmed CrossRef
  33. Chidambaram, S. B., Essa, M. M., Rathipriya, A. G., Bishir, M., Ray, B., Mahalakshmi, A. M., Tousif, A. H., Sakharkar, M. K., Kashyap, R. S., Friedland, R. P. and Monaghan, T. M. (2022) Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: tales of a vicious cycle. Pharmacol. Ther. 231, 107988.
    Pubmed CrossRef
  34. Choi, J. G., Kim, N., Ju, I. G., Eo, H., Lim, S. M., Jang, S. E., Kim, D. H. and Oh, M. S. (2018) Oral administration of Proteus mirabilis damages dopaminergic neurons and motor functions in mice. Sci. Rep. 8, 1275.
    Pubmed KoreaMed CrossRef
  35. Choi, J. K., Kwon, O. Y. and Lee, S. H. (2024) Oral administration of Bifidobacterium lactis ameliorates cognitive deficits in mice intracerebroventricularly administered amyloid beta via regulation the activation of mitogen-activated protein kinases. Food Sci. Anim. Resour. 44, 607-619.
    Pubmed KoreaMed CrossRef
  36. Chu, C., Yu, L., Li, Y., Guo, H., Zhai, Q., Chen, W. and Tian, F. (2023) Lactobacillus plantarum CCFM405 against rotenone-induced Parkinson's disease mice via regulating gut microbiota and branched-chain amino acids biosynthesis. Nutrients 15, 1737.
    Pubmed KoreaMed CrossRef
  37. Chung, Y., Kang, S. B., Son, D., Lee, J. Y., Chung, M. J. and Lim, S. (2023) Characterization of the probiotic properties of Lacticaseibacillus rhamnosus LR6 isolated from the vaginas of healthy Korean women against vaginal pathogens. Front. Microbiol. 14, 1308293.
    Pubmed KoreaMed CrossRef
  38. Correale, J., Gaitan, M. I., Ysrraelit, M. C. and Fiol, M. P. (2017) Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain 140, 527-546.
    Pubmed CrossRef
  39. (2022) Chronic treatment with the probiotics Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis BB12 attenuates motor impairment, striatal microglial activation, and dopaminergic loss in rats with 6-hydroxydopamine-induced hemiparkinsonism. Neuroscience 507, 79-98.
    Pubmed CrossRef
  40. Dalile, B., Van Oudenhove, L., Vervliet, B. and Verbeke, K. (2019) The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461-478.
    Pubmed CrossRef
  41. Dar, K. B., Bhat, A. H., Amin, S., Reshi, B. A., Zargar, M. A., Masood, A. and Ganie, S. A. (2020) Elucidating critical proteinopathic mechanisms and potential drug targets in neurodegeneration. Cell. Mol. Neurobiol. 40, 313-345.
    Pubmed CrossRef
  42. Dargahi, N., Matsoukas, J. and Apostolopoulos, V. (2020) Streptococcus thermophilus ST285 alters pro-inflammatory to anti-inflammatory cytokine secretion against multiple sclerosis peptide in mice. Brain Sci. 10, 126.
    Pubmed KoreaMed CrossRef
  43. Deng, S. M., Chen, C. J., Lin, H. L. and Cheng, I. H. (2022) The beneficial effect of synbiotics consumption on Alzheimer's disease mouse model via reducing local and systemic inflammation. IUBMB Life 74, 748-753.
    Pubmed CrossRef
  44. Di Salvo, C., D'Antongiovanni, V., Benvenuti, L., Amati, A., Ippolito, C., Segnani, C., Pierucci, C., Bellini, G., Annese, T., Virgintino, D., Colucci, R., Antonioli, L., Fornai, M., Errede, M., Bernardini, N. and Pellegrini, C. (2024) Lactiplantibacillus plantarum HEAL9 attenuates cognitive impairment and progression of Alzheimer's disease and related bowel symptoms in SAMP8 mice by modulating microbiota-gut-inflammasome-brain axis. Food Funct. 15, 10323-10338.
    Pubmed CrossRef
  45. Digehsara, S. G., Name, N., Sartipnia, N., Karim, E., Taheri, S., Ebrahimi, M. T. and Arasteh, J. (2021) Analysis of inflammasomes and CYP27B1 genes in cuprizone demyelinated C57BL/6 mice and evaluation of Th1 and Th2 patterns after oral administration of Lactobacillus casei strain T2 (IBRC-M10783). Microb. Pathog. 155, 104931.
    Pubmed CrossRef
  46. Ding, C., Wu, Y., Chen, X., Chen, Y., Wu, Z., Lin, Z., Kang, D., Fang, W. and Chen, F. (2022) Global, regional, and national burden and attributable risk factors of neurological disorders: The Global Burden of Disease study 1990-2019. Front. Public Health 10, 952161.
    Pubmed KoreaMed CrossRef
  47. Drucker, D. J. (2002) Gut adaptation and the glucagon-like peptides. Gut 50, 428-435.
    Pubmed KoreaMed CrossRef
  48. Du, Y., Li, Y., Xu, X., Li, R., Zhang, M., Cui, Y., Zhang, L., Wei, Z., Wang, S. and Tuo, H. (2022) Probiotics for constipation and gut microbiota in Parkinson's disease. Parkinsonism Relat. Disord. 103, 92-97.
    Pubmed CrossRef
  49. Dunalska, A., Saramak, K. and Szejko, N. (2023) The role of gut microbiome in the pathogenesis of multiple sclerosis and related disorders. Cells 12, 1760.
    Pubmed KoreaMed CrossRef
  50. Fan, H. X., Sheng, S., Li, D. D., Li, J. J., Wang, G. Q. and Zhang, F. (2023) Heat-killed Lactobacillus murinus confers neuroprotection against dopamine neuronal loss by targeting NLRP3 inflammasome. Bioeng. Transl. Med. 8, e10455.
    Pubmed KoreaMed CrossRef
  51. Fang, X., Zhou, X., Miao, Y., Han, Y., Wei, J. and Chen, T. (2020) Therapeutic effect of GLP-1 engineered strain on mice model of Alzheimer's disease and Parkinson's disease. AMB Express 10, 80.
    Pubmed KoreaMed CrossRef
  52. Fei, Y., Wang, R., Lu, J., Peng, S., Yang, S., Wang, Y., Zheng, K., Li, R., Lin, L. and Li, M. (2023) Probiotic intervention benefits multiple neural behaviors in older adults with mild cognitive impairment. Geriatr. Nurs. 51, 167-175.
    Pubmed CrossRef
  53. Foster, S. G., Mathew, S., Labarre, A., Parker, J. A., Tompkins, T. A. and Binda, S. (2024) Lacticaseibacillus rhamnosus HA-114 and Bacillus subtilis R0179 prolong lifespan and mitigate amyloid-beta toxicity in C. elegans via distinct mechanisms. J. Alzheimers Dis. 101, 49-60.
    Pubmed KoreaMed CrossRef
  54. Fulling, C., Dinan, T. G. and Cryan, J. F. (2019) Gut microbe to brain signaling: what happens in vagus. Neuron 101, 998-1002.
    Pubmed CrossRef
  55. Gadhave, D. G., Sugandhi, V. V., Jha, S. K., Nangare, S. N., Gupta, G., Singh, S. K., Dua, K., Cho, H., Hansbro, P. M. and Paudel, K. R. (2024) Neurodegenerative disorders: mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res. Rev. 99, 102357.
    Pubmed CrossRef
  56. Gao, H., Li, X., Chen, X., Hai, D., Wei, C., Zhang, L. and Li, P. (2022) The functional roles of Lactobacillus acidophilus in different physiological and pathological processes. J. Microbiol. Biotechnol. 32, 1226-1233.
    Pubmed KoreaMed CrossRef
  57. Garg, N. and Smith, T. W. (2015) An update on immunopathogenesis, diagnosis, and treatment of multiple sclerosis. Brain Behav. 5, e00362.
    Pubmed KoreaMed CrossRef
  58. Ghalandari, N., Assarzadegan, F., Habibi, S. A. H., Esmaily, H. and Malekpour, H. (2023) Efficacy of probiotics in improving motor function and alleviating constipation in Parkinson's disease: a randomized controlled trial. Iran. J. Pharm. Res. 22, e137840.
    Pubmed KoreaMed CrossRef
  59. Gharehkhani Digehsara, S., Name, N., Esfandiari, B., Karim, E., Taheri, S., Tajabadi-Ebrahimi, M. and Arasteh, J. (2021) Effects of Lactobacillus casei strain T2 (IBRC-M10783) on the modulation of Th17/Treg and evaluation of miR-155, miR-25, and IDO-1 expression in a cuprizone-induced C57BL/6 mouse model of demyelination. Inflammation 44, 334-343.
    Pubmed CrossRef
  60. Ghyselinck, J., Verstrepen, L., Moens, F., Van Den Abbeele, P., Bruggeman, A., Said, J., Smith, B., Barker, L. A., Jordan, C., Leta, V., Chaudhuri, K. R., Basit, A. W. and Gaisford, S. (2021) Influence of probiotic bacteria on gut microbiota composition and gut wall function in an in-vitro model in patients with Parkinson's disease. Int. J. Pharm. X 3, 100087.
    Pubmed KoreaMed CrossRef
  61. Gribble, F. M. and Reimann, F. (2016) Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277-299.
    Pubmed CrossRef
  62. Gupta, R., Advani, D., Yadav, D., Ambasta, R. K. and Kumar, P. (2023) Dissecting the relationship between neuropsychiatric and neurodegenerative disorders. Mol. Neurobiol. 60, 6476-6529.
    Pubmed CrossRef
  63. Hamid, M. and Zahid, S. (2023) Ameliorative effects of probiotics in AlCl(3)-induced mouse model of Alzheimer's disease. Appl. Microbiol. Biotechnol. 107, 5803-5812.
    Pubmed CrossRef
  64. Haran, J. P., Bhattarai, S. K., Foley, S. E., Dutta, P., Ward, D. V., Bucci, V. and McCormick, B. A. (2019) Alzheimer's disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. mBio 10, e00632-19.
    Pubmed KoreaMed CrossRef
  65. Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E. M., Logroscino, G., Robberecht, W., Shaw, P. J., Simmons, Z. and van den Berg, L. H. (2017) Amyotrophic lateral sclerosis. Mol. Neurobiol. 61, 17071.
    Pubmed CrossRef
  66. Hasaniani, N., Ghasemi-Kasman, M., Halaji, M. and Rostami-Mansoor, S. (2024) Bifidobacterium breve probiotic compared to Lactobacillus casei causes a better reduction in demyelination and oxidative stress in cuprizone-induced demyelination model of rat. Mol. Neurobiol. 61, 498-509.
    Pubmed CrossRef
  67. Hawrysh, P. J., Gao, J., Tan, S., Oh, A., Nodwell, J., Tompkins, T. A. and McQuibban, G. A. (2023) PRKN/parkin-mediated mitophagy is induced by the probiotics Saccharomyces boulardii and Lactococcus lactis. Autophagy 19, 2094-2110.
    Pubmed KoreaMed CrossRef
  68. He, B., Hoang, T. K., Tian, X., Taylor, C. M., Blanchard, E., Luo, M., Bhattacharjee, M. B., Freeborn, J., Park, S., Couturier, J., Lindsey, J. W., Tran, D. Q., Rhoads, J. M. and Liu, Y. (2019) Lactobacillus reuteri reduces the severity of experimental autoimmune encephalomyelitis in mice by modulating gut microbiota. Front. Immunol. 10, 385.
    Pubmed KoreaMed CrossRef
  69. He, X., Yan, C., Zhao, S., Zhao, Y., Huang, R. and Li, Y. (2022) The preventive effects of probiotic Akkermansia muciniphila on D-galactose/AlCl3 mediated Alzheimer's disease-like rats. Exp. Gerontol. 170, 111959.
    Pubmed CrossRef
  70. He, Y., Zhao, J., Ma, Y., Yan, X., Duan, Y., Zhang, X., Dong, H., Fang, R., Zhang, Y., Li, Q., Yang, P., Yu, M., Fei, J. and Huang, F. (2024) Citrobacter rodentium infection impairs dopamine metabolism and exacerbates the pathology of Parkinson's disease in mice. J. Neuroinflammation 21, 153.
    Pubmed KoreaMed CrossRef
  71. Heemels, M. T. (2016) Neurodegenerative diseases. Nature 539, 179.
    Pubmed CrossRef
  72. Hertzberg, V. S., Singh, H., Fournier, C. N., Moustafa, A., Polak, M., Kuelbs, C. A., Torralba, M. G., Tansey, M. G., Nelson, K. E. and Glass, J. D. (2022) Gut microbiome differences between amyotrophic lateral sclerosis patients and spouse controls. Amyotroph. Lateral Scler. Frontotemporal Degener. 23, 91-99.
    Pubmed KoreaMed CrossRef
  73. Heydari, R., Khosravifar, M., Abiri, S., Dashtbin, S., Alvandi, A., Nedaei, S.E., Salimi, Z., Zarei, F. and Abiri, R. (2025) A domestic strain of Lactobacillus rhamnosus attenuates cognitive deficit and pro-inflammatory cytokine expression in an animal model of Alzheimer's disease. Behav. Brain Res. 476, 115277.
    Pubmed CrossRef
  74. Hirayama, M., Nishiwaki, H., Hamaguchi, T. and Ohno, K. (2023) Gastrointestinal disorders in Parkinson's disease and other Lewy body diseases. NPJ Parkinsons Dis. 9, 71.
    Pubmed KoreaMed CrossRef
  75. Hsieh, T. H., Kuo, C. W., Hsieh, K. H., Shieh, M. J., Peng, C. W., Chen, Y. C., Chang, Y. L., Huang, Y. Z., Chen, C. C., Chang, P. K., Chen, K. Y. and Chen, H. Y. (2020) Probiotics alleviate the progressive deterioration of motor functions in a mouse model of Parkinson's disease. Brain Sci. 10, 206.
    Pubmed KoreaMed CrossRef
  76. Hsu, Y. C., Huang, Y. Y., Tsai, S. Y., Kuo, Y. W., Lin, J. H., Ho, H. H., Chen, J. F., Hsia, K. C. and Sun, Y. (2023) Efficacy of probiotic supplements on brain-derived neurotrophic factor, inflammatory biomarkers, oxidative stress and cognitive function in patients with Alzheimer's dementia: a 12-week randomized, double-blind active-controlled study. Nutrients 16, 16.
    Pubmed KoreaMed CrossRef
  77. Hu, F., Gao, Q., Zheng, C., Zhang, W., Yang, Z., Wang, S., Zhang, Y. and Lu, T. (2024a) Encapsulated lactiplantibacillus plantarum improves Alzheimer's symptoms in APP/PS1 mice. J. Nanobiotechnology 22, 582.
    Pubmed KoreaMed CrossRef
  78. Hu, X., Chen, F., Jia, L., Long, A., Peng, Y., Li, X., Huang, J., Wei, X., Fang, X., Gao, Z., Zhang, M., Liu, X., Chen, Y.G., Wang, Y., Zhang, H. and Wang, Y. (2024b) A gut-derived hormone regulates cholesterol metabolism. Cell 187, 1685-1700.e18.
    Pubmed CrossRef
  79. Huang, C. H., Li, S. W., Huang, L. and Watanabe, K. (2018) Identification and classification for the Lactobacillus casei group. Front. Microbiol. 9, 1974.
    Pubmed KoreaMed CrossRef
  80. Huang, Y., Li, Y., Pan, H. and Han, L. (2023) Global, regional, and national burden of neurological disorders in 204 countries and territories worldwide. J. Glob. Health 13, 04160.
    Pubmed KoreaMed CrossRef
  81. Huh, E., Choi, J. G., Choi, Y., Ju, I. G., Kim, B., Shin, Y. J., An, J. M., Park, M. G., Yim, S. V., Chung, S. J., Seo, S. U., Kim, D., Kim, C. H., Kim, D. H. and Oh, M. S. (2023) P. mirabilis-derived pore-forming haemolysin, HpmA drives intestinal alpha-synuclein aggregation in a mouse model of neurodegeneration. EBioMedicine 98, 104887.
    Pubmed KoreaMed CrossRef
  82. Ibrahim, A., Ali, R. A. R., Manaf, M. R. A., Ahmad, N., Tajurruddin, F. W., Qin, W. Z., Desa, S. H. M. and Ibrahim, N. M. (2020) Multi-strain probiotics (Hexbio) containing MCP BCMC strains improved constipation and gut motility in Parkinson's disease: a randomised controlled trial. PLoS One 15, e0244680.
    Pubmed KoreaMed CrossRef
  83. Ilie, O. D., Duta, R., Balmus, I. M., Savuca, A., Petrovici, A., Nita, I. B., Antoci, L. M., Jijie, R., Mihai, C. T., Ciobica, A., Nicoara, M., Popescu, R., Dobrin, R., Solcan, C., Trifan, A., Stanciu, C. and Doroftei, B. (2022) Assessing the neurotoxicity of a sub-optimal dose of rotenone in zebrafish (Danio rerio) and the possible neuroactive potential of valproic acid, combination of levodopa and carbidopa, and lactic acid bacteria strains. Antioxidants (Basel) 11, 2040.
    Pubmed KoreaMed CrossRef
  84. iMSMS Consortium. (2022) Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course. Cell 185, 3467-3486.e16.
    Pubmed KoreaMed CrossRef
  85. Ishii, T., Furuoka, H., Kaya, M. and Kuhara, T. (2021) Oral administration of probiotic Bifidobacterium breve improves facilitation of hippocampal memory extinction via restoration of aberrant higher induction of neuropsin in an MPTP-induced mouse model of Parkinson's disease. Biomedicines 9, 167.
    Pubmed KoreaMed CrossRef
  86. Jin, J., Xu, Z., Zhang, L., Zhang, C., Zhao, X., Mao, Y., Zhang, H., Liang, X., Wu, J., Yang, Y. and Zhang, J. (2023) Gut-derived beta-amyloid: Likely a centerpiece of the gut-brain axis contributing to Alzheimer's pathogenesis. Gut Microbes 15, 2167172.
    Pubmed KoreaMed CrossRef
  87. Johanson, D. M., Goertz, J. E., Marin, I. A., Costello, J., Overall, C. C. and Gaultier, A. (2020) Experimental autoimmune encephalomyelitis is associated with changes of the microbiota composition in the gastrointestinal tract. Sci. Rep. 10, 15183.
    Pubmed KoreaMed CrossRef
  88. Kalia, L. V. and Lang, A. E. (2015) Parkinson's disease. Lancet 386, 896-912.
    Pubmed CrossRef
  89. Kaur, H., Golovko, S., Golovko, M. Y., Singh, S., Darland, D. C. and Combs, C. K. (2020) Effects of probiotic supplementation on short chain fatty acids in the AppNL-G-F mouse model of Alzheimer's disease. J. Alzheimers Dis. 76, 1083-1102.
    Pubmed KoreaMed CrossRef
  90. Kesika, P., Suganthy, N., Sivamaruthi, B. S. and Chaiyasut, C. (2021) Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer's disease. Life Sci. 264, 118627.
    Pubmed CrossRef
  91. Khan, S., Barve, K. H. and Kumar, M. S. (2020) Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer's disease. Curr. Neuropharmacol. 18, 1106-1125.
    Pubmed KoreaMed CrossRef
  92. Kim, C. S., Cha, L., Sim, M., Jung, S., Chun, W. Y., Baik, H. W. and Shin, D. M. (2021a) Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. J. Gerontol. A Biol. Sci. Med. Sci. 76, 32-40.
    Pubmed KoreaMed CrossRef
  93. Kim, H., Kim, S., Park, S. J., Park, G., Shin, H., Park, M. S. and Kim, J. (2021b) Administration of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI improves cognitive and memory function in the mouse model of Alzheimer's disease. Front. Aging Neurosci. 13, 709091.
    Pubmed KoreaMed CrossRef
  94. Kim, H. S., Son, J., Lee, D., Tsai, J., Wang, D., Chocron, E. S., Jeong, S., Kittrell, P., Murchison, C. F., Kennedy, R. E., Tobon, A., Jackson, C. E. and Pickering, A. M. (2022) Gut- and oral-dysbiosis differentially impact spinal- and bulbar-onset ALS, predicting ALS severity and potentially determining the location of disease onset. BMC Neurol. 22, 62.
    Pubmed KoreaMed CrossRef
  95. Kim, S., Kwon, S. H., Kam, T. I., Panicker, N., Karuppagounder, S. S., Lee, S., Lee, J. H., Kim, W. R., Kook, M., Foss, C. A., Shen, C., Lee, H., Kulkarni, S., Pasricha, P. J., Lee, G., Pomper, M. G., Dawson, V.L., Dawson, T. M. and Ko, H. S. (2019) Transneuronal propagation of pathologic alpha-synuclein from the gut to the brain models Parkinson's disease. Neuron 103, 627-641.e7.
    Pubmed KoreaMed CrossRef
  96. Kim, Y. J., Mun, B. R., Choi, K. Y. and Choi, W. S. (2024) Oral administration of probiotic bacteria alleviates tau phosphorylation, abeta accumulation, microglia activation, and memory loss in 5xFAD mice. Brain Sci. 14, 208.
    Pubmed KoreaMed CrossRef
  97. Kim, Y. S. and Joh, T. H. (2012) Matrix metalloproteinases, new insights into the understanding of neurodegenerative disorders. Biomol. Ther. (Seoul) 20, 133-143.
    Pubmed KoreaMed CrossRef
  98. Kobayashi, Y., Kinoshita, T., Oki, M., Matsumoto, A., Yoshino, K., Saito, I. and Xiao, J. Z. (2019a) Bifidobacterium breve A1 supplementation improved cognitive decline in older adults with mild cognitive impairment: an open-label, single-arm study. J. Prev. Alzheimers Dis. 6, 70-75.
    Pubmed CrossRef
  99. Kobayashi, Y., Kuhara, T., Oki, M. and Xiao, J. Z. (2019b) Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef. Microbes 10, 511-520.
    Pubmed CrossRef
  100. Kobayashi, Y., Sugahara, H., Shimada, K., Mitsuyama, E., Kuhara, T., Yasuoka, A., Kondo, T., Abe, K. and Xiao, J. Z. (2017) Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Sci. Rep. 7, 13510.
    Pubmed KoreaMed CrossRef
  101. Kostrzewa, R. M. and Segura-Aguilar, J. (2003) Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. a review. Neurotox. Res. 5, 375-383.
    Pubmed CrossRef
  102. Kouchaki, E., Tamtaji, O. R., Salami, M., Bahmani, F., Daneshvar Kakhaki, R., Akbari, E., Tajabadi-Ebrahimi, M., Jafari, P. and Asemi, Z. (2017) Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Clin. Nutr. 36, 1245-1249.
    Pubmed CrossRef
  103. Kumaree, K. K., Prasanth, M. I., Sivamaruthi, B. S., Kesika, P., Tencomnao, T., Chaiyasut, C. and Prasansuklab, A. (2023) Lactobacillus paracasei HII01 enhances lifespan and promotes neuroprotection in Caenorhabditis elegans. Sci. Rep. 13, 16707.
    Pubmed KoreaMed CrossRef
  104. Kwoji, I. D., Aiyegoro, O. A., Okpeku, M. and Adeleke, M. A. (2021) Multi-strain probiotics: synergy among isolates enhances biological activities. Biology (Basel) 10, 322.
    Pubmed KoreaMed CrossRef
  105. Labarre, A., Guitard, E., Tossing, G., Forest, A., Bareke, E., Labrecque, M., Tetreault, M., Ruiz, M. and Alex Parker, J. (2022) Fatty acids derived from the probiotic Lacticaseibacillus rhamnosus HA-114 suppress age-dependent neurodegeneration. Commun. Biol. 5, 1340.
    Pubmed KoreaMed CrossRef
  106. Lana, D., Traini, C., Bulli, I., Sarti, G., Magni, G., Attorre, S., Giovannini, M. G. and Vannucchi, M. G. (2024) Chronic administration of prebiotics and probiotics ameliorates pathophysiological hallmarks of Alzheimer's disease in a APP/PS1 transgenic mouse model. Front. Pharmacol. 15, 1451114.
    Pubmed KoreaMed CrossRef
  107. Latif, A., Shehzad, A., Niazi, S., Zahid, A., Ashraf, W., Iqbal, M. W., Rehman, A., Riaz, T., Aadil, R. M., Khan, I. M., Ozogul, F., Rocha, J. M., Esatbeyoglu, T. and Korma, S. A. (2023) Probiotics: mechanism of action, health benefits and their application in food industries. Front. Microbiol. 14, 1216674.
    Pubmed KoreaMed CrossRef
  108. Laursen, M. F., Sakanaka, M., von Burg, N., Morbe, U., Andersen, D., Moll, J.M., Pekmez, C. T., Rivollier, A., Michaelsen, K. F., Molgaard, C., Lind, M. V., Dragsted, L. O., Katayama, T., Frandsen, H. L., Vinggaard, A. M., Bahl, M. I., Brix, S., Agace, W., Licht, T. R. and Roager, H. M. (2021) Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat. Microbiol. 6, 1367-1382.
    Pubmed KoreaMed CrossRef
  109. Lavasani, S., Dzhambazov, B., Nouri, M., Fak, F., Buske, S., Molin, G., Thorlacius, H., Alenfall, J., Jeppsson, B. and Westrom, B. (2010) A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS One 5, e9009.
    Pubmed KoreaMed CrossRef
  110. Lee, A., Henderson, R., Aylward, J. and McCombe, P. (2024) Gut symptoms, gut dysbiosis and gut-derived toxins in ALS. Int. J. Mol. Sci. 25, 1871.
    Pubmed KoreaMed CrossRef
  111. Lee, D. Y., Shin, Y. J., Kim, J. K., Jang, H. M., Joo, M. K. and Kim, D. H. (2021a) Alleviation of cognitive impairment by gut microbiota lipopolysaccharide production-suppressing Lactobacillus plantarum and Bifidobacterium longum in mice. Food Funct. 12, 10750-10763.
    Pubmed CrossRef
  112. Lee, H. J., Lee, K. E., Kim, J. K. and Kim, D. H. (2019) Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice. Sci. Rep. 9, 11814.
    Pubmed KoreaMed CrossRef
  113. Lee, J., Madhavan, A., Krajewski, E. and Lingenfelter, S. (2021b) Assessment of dysarthria and dysphagia in patients with amyotrophic lateral sclerosis: review of the current evidence. Muscle Nerve 64, 520-531.
    Pubmed CrossRef
  114. Lee, S., Eom, S., Lee, J., Pyeon, M., Kim, K., Choi, K. Y., Lee, J. H., Shin, D. J., Lee, K. H., Oh, S. and Lee, J. H. (2023) Probiotics that ameliorate cognitive impairment through anti-inflammation and anti-oxidation in mice. Food Sci. Anim. Resour. 43, 612-624.
    Pubmed KoreaMed CrossRef
  115. Li, T., Chu, C., Yu, L., Zhai, Q., Wang, S., Zhao, J., Zhang, H., Chen, W. and Tian, F. (2022) Neuroprotective effects of Bifidobacterium breve CCFM1067 in MPTP-induced mouse models of Parkinson's disease. Nutrients 14, 4678.
    Pubmed KoreaMed CrossRef
  116. Li, X., Zheng, P., Cao, W., Cao, Y., She, X., Yang, H., Ma, K., Wu, F., Gao, X., Fu, Y., Yin, J., Wei, F., Jiang, S. and Cui, B. (2023) Lactobacillus rhamnosus GG ameliorates noise-induced cognitive deficits and systemic inflammation in rats by modulating the gut-brain axis. Front. Cell. Infect. Microbiol. 13, 1067367.
    Pubmed KoreaMed CrossRef
  117. Lin, C. H., Chen, C. C., Chiang, H. L., Liou, J. M., Chang, C. M., Lu, T. P., Chuang, E. Y., Tai, Y. C., Cheng, C., Lin, H. Y. and Wu, M. S. (2019) Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson's disease. J. Neuroinflammation 16, 129.
    Pubmed KoreaMed CrossRef
  118. Ling, Z., Cheng, Y., Yan, X., Shao, L., Liu, X., Zhou, D., Zhang, L., Yu, K. and Zhao, L. (2020) Alterations of the fecal microbiota in Chinese patients with multiple sclerosis. Front. Immunol. 11, 590783.
    Pubmed KoreaMed CrossRef
  119. Liu, S., Gao, J., Zhu, M., Liu, K. and Zhang, H. L. (2020) Gut microbiota and dysbiosis in Alzheimer's disease: implications for pathogenesis and treatment. Mol. Neurobiol. 57, 5026-5043.
    Pubmed KoreaMed CrossRef
  120. Lu, C. S., Chang, H. C., Weng, Y. H., Chen, C. C., Kuo, Y. S. and Tsai, Y. C. (2021) The add-on effect of Lactobacillus plantarum PS128 in Patients with Parkinson's disease: a pilot study. Front. Nutr. 8, 650053.
    Pubmed KoreaMed CrossRef
  121. Ma, X., Kim, J. K., Shin, Y. J., Son, Y. H., Lee, D. Y., Park, H. S. and Kim, D. H. (2023a) Alleviation of cognitive impairment-like behaviors, neuroinflammation, colitis, and gut dysbiosis in 5xFAD transgenic and aged mice by Lactobacillus mucosae and Bifidobacterium longum. Nutrients 15, 3381.
    Pubmed KoreaMed CrossRef
  122. Ma, Y. F., Lin, Y. A., Huang, C. L., Hsu, C. C., Wang, S., Yeh, S. R. and Tsai, Y. C. (2023b) Lactiplantibacillus plantarum PS128 alleviates exaggerated cortical beta oscillations and motor deficits in the 6-hydroxydopamine rat model of Parkinson's disease. Probiotics Antimicrob. Proteins 15, 312-325.
    Pubmed CrossRef
  123. Maftoon, H., Davar Siadat, S., Tarashi, S., Soroush, E., Basir Asefi, M., Rahimi Foroushani, A. and Mehdi Soltan Dallal, M. (2024) Ameliorative effects of Akkermansia muciniphila on anxiety-like behavior and cognitive deficits in a rat model of Alzheimer's disease. Brain Res. 1845, 149280.
    Pubmed CrossRef
  124. Magistrelli, L., Amoruso, A., Mogna, L., Graziano, T., Cantello, R., Pane, M. and Comi, C. (2019) Probiotics may have beneficial effects in Parkinson's disease: in vitro evidence. Front. Immunol. 10, 969.
    Pubmed KoreaMed CrossRef
  125. Mahbub, N. U., Islam, M. M., Hong, S. T. and Chung, H. J. (2024) Dysbiosis of the gut microbiota and its effect on alpha-synuclein and prion protein misfolding: consequences for neurodegeneration. Front. Cell. Infect. Microbiol. 14, 1348279.
    Pubmed KoreaMed CrossRef
  126. Marizzoni, M., Cattaneo, A., Mirabelli, P., Festari, C., Lopizzo, N., Nicolosi, V., Mombelli, E., Mazzelli, M., Luongo, D., Naviglio, D., Coppola, L., Salvatore, M. and Frisoni, G. B. (2020) Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer's disease. J. Alzheimers Dis. 78, 683-697.
    Pubmed CrossRef
  127. Marsova, M., Poluektova, E., Odorskaya, M., Ambaryan, A., Revishchin, A., Pavlova, G. and Danilenko, V. (2020) Protective effects of Lactobacillus fermentum U-21 against paraquat-induced oxidative stress in Caenorhabditis elegans and mouse models. World J. Microbiol. Biotechnol. 36, 104.
    Pubmed CrossRef
  128. McFarthing, K., Buff, S., Rafaloff, G., Pitzer, K., Fiske, B., Navangul, A., Beissert, K., Pilcicka, A., Fuest, R., Wyse, R. K. and Stott, S. R. W. (2024) Parkinson's disease drug therapies in the clinical trial pipeline: 2024 update. J. Parkinsons Dis. 14, 899-912.
    Pubmed KoreaMed CrossRef
  129. Mead, R. J., Shan, N., Reiser, H. J., Marshall, F. and Shaw, P. J. (2023) Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat. Rev. Drug Discov. 22, 185-212.
    Pubmed KoreaMed CrossRef
  130. Medeiros, D., McMurry, K., Pfeiffer, M., Newsome, K., Testerman, T., Graf, J., Silver, A. C. and Sacchetti, P. (2024) Slowing Alzheimer's disease progression through probiotic supplementation. Front. Neurosci. 18, 1309075.
    Pubmed KoreaMed CrossRef
  131. Mehrabadi, S. and Sadr, S. S. (2020) Assessment of probiotics mixture on memory function, inflammation markers, and oxidative stress in an Alzheimer's disease model of rats. Iran. Biomed. J. 24, 220-228.
    Pubmed KoreaMed CrossRef
  132. Mlynarska, E., Gadzinowska, J., Tokarek, J., Forycka, J., Szuman, A., Franczyk, B. and Rysz, J. (2022) The role of the microbiome-brain-gut axis in the pathogenesis of depressive disorder. Nutrients 14, 1921.
    Pubmed KoreaMed CrossRef
  133. Mohammadi, G., Dargahi, L., Peymani, A., Mirzanejad, Y., Alizadeh, S. A., Naserpour, T. and Nassiri-Asl, M. (2019) The Effects of probiotic formulation pretreatment (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on a lipopolysaccharide rat model. J. Am. Coll. Nutr. 38, 209-217.
    Pubmed CrossRef
  134. Moles, L., Egimendia, A., Osorio-Querejeta, I., Iparraguirre, L., Alberro, A., Suarez, J., Sepulveda, L., Castillo-Trivino, T., Munoz-Culla, M., Ramos-Cabrer, P. and Otaegui, D. (2021) Gut microbiota changes in experimental autoimmune encephalomyelitis and cuprizone mice models. ACS Chem. Neurosci. 12, 893-905.
    Pubmed CrossRef
  135. Montgomery, T. L., Eckstrom, K., Lile, K. H., Caldwell, S., Heney, E. R., Lahue, K. G., D'Alessandro, A., Wargo, M. J. and Krementsov, D. N. (2022) Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity. Microbiome 10, 198.
    Pubmed KoreaMed CrossRef
  136. Morais, L. H., Schreiber, H. L. and Mazmanian, S. K. (2021) The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19, 241-255.
    Pubmed CrossRef
  137. Moravejolahkami, A. R., Chitsaz, A., Hassanzadeh, A. and Paknahad, Z. (2023) Anti-inflammatory-antioxidant modifications and synbiotics improved health-related conditions in patients with progressive forms of multiple sclerosis: a single-center, randomized clinical trial. Complement. Ther. Clin. Pract. 53, 101794.
    Pubmed CrossRef
  138. Moser, T., Akgun, K., Proschmann, U., Sellner, J. and Ziemssen, T. (2020) The role of TH17 cells in multiple sclerosis: therapeutic implications. Autoimmun. Rev. 19, 102647.
    Pubmed CrossRef
  139. Mou, Y., Du, Y., Zhou, L., Yue, J., Hu, X., Liu, Y., Chen, S., Lin, X., Zhang, G., Xiao, H. and Dong, B. (2022) Gut microbiota interact with the brain through systemic chronic inflammation: implications on neuroinflammation, neurodegeneration, and aging. Front. Immunol. 13, 796288.
    Pubmed KoreaMed CrossRef
  140. Napoles-Medina, A. Y., Aguilar-Uscanga, B. R., Solis-Pacheco, J. R., Tejeda-Martinez, A. R., Ramirez-Jirano, L. J., Urmeneta-Ortiz, M. F., Chaparro-Huerta, V. and Flores-Soto, M. E. (2023) Oral administration of Lactobacillus inhibits the permeability of blood-brain and gut barriers in a Parkinsonism model. Behav. Neurol. 2023, 6686037.
    Pubmed KoreaMed CrossRef
  141. Neiworth-Petshow, E. M. and Baldwin-Sayre, C. (2018) Naturopathic treatment of gastrointestinal dysfunction in the setting of Parkinson's disease. Integr. Med. (Encinitas) 17, 44-50.
  142. Nicholson, K., Bjornevik, K., Abu-Ali, G., Chan, J., Cortese, M., Dedi, B., Jeon, M., Xavier, R., Huttenhower, C., Ascherio, A. and Berry, J. D. (2021) The human gut microbiota in people with amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 22, 186-194.
    Pubmed CrossRef
  143. Nie, H., Wang, X., Luo, Y., Kong, F., Mu, G. and Wu, X. (2024) Mechanism explanation on improved cognitive ability of D-gal inducing aged mice model by Lactiplantibacillus plantarum MWFLp-182 via the microbiota-gut-brain axis. J. Agric. Food Chem. 72, 9795-9806.
    Pubmed CrossRef
  144. Nimgampalle, M. and Kuna, Y. (2017) Anti-Alzheimer Properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer's disease induced albino rats. J. Clin. Diagn. Res. 11, KC01-KC05.
    Pubmed KoreaMed CrossRef
  145. Noor Eddin, A., Alfuwais, M., Noor Eddin, R., Alkattan, K. and Yaqinuddin, A. (2024) Gut-modulating agents and amyotrophic lateral sclerosis: current evidence and future perspectives. Nutrients 16, 590.
    Pubmed KoreaMed CrossRef
  146. Ohno, K., Abdelhamid, M., Zhou, C., Jung, C. G. and Michikawa, M. (2022) Bifidobacterium breve MCC1274 supplementation increased the plasma levels of metabolites with potential anti-oxidative activity in APP knock-in mice. J. Alzheimers Dis. 89, 1413-1425.
    Pubmed KoreaMed CrossRef
  147. Ojha, S., Patil, N., Jain, M., Kole, C. and Kaushik, P. (2023) Probiotics for neurodegenerative diseases: a systemic review. Microorganisms 11, 1083.
    Pubmed KoreaMed CrossRef
  148. Ou, Z., Deng, L., Lu, Z., Wu, F., Liu, W., Huang, D. and Peng, Y. (2020) Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer's disease. Nutr. Diabetes 10, 12.
    Pubmed KoreaMed CrossRef
  149. Pan, H., Sun, T., Cui, M., Ma, N., Yang, C., Liu, J., Pang, G., Liu, B., Li, L., Zhang, X., Zhang, W., Chang, J. and Wang, H. (2022) Light-sensitive Lactococcus lactis for microbe-gut-brain axis regulating via upconversion optogenetic micro-nano system. ACS Nano 16, 6049-6063.
    Pubmed CrossRef
  150. Parra, I., Martinez, I., Vasquez-Celaya, L., Gongora-Alfaro, J. L., Tizabi, Y. and Mendieta, L. (2023) Neuroprotective and immunomodulatory effects of probiotics in a rat model of Parkinson's disease. Neurotox. Res. 41, 187-200.
    Pubmed CrossRef
  151. Patel, C., Pande, S. and Acharya, S. (2020) Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus UBLR-58 against scopolamine-induced memory impairment in mice. Naunyn Schmiedebergs Arch. Pharmacol. 393, 1955-1962.
    Pubmed CrossRef
  152. Perez Visnuk, D., LeBlanc, J. G., de Moreno and de LeBlanc, A. (2024) Neuroprotective effects exerted by a combination of selected lactic acid bacteria in a mouse parkinsonism model under levodopa-benserazide treatment. Neurochem. Res. 49, 2940-2956.
    Pubmed CrossRef
  153. Perez Visnuk, D., Savoy de Giori, G., LeBlanc, J. G. and de Moreno de LeBlanc, A. (2020) Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinson's disease model. Nutrition 79-80, 110995.
    Pubmed CrossRef
  154. Qi, Y., Dong, Y., Chen, J., Xie, S., Ma, X., Yu, X., Yu, Y. and Wang, Y. (2024) Lactiplantibacillus plantarum SG5 inhibits neuroinflammation in MPTP-induced PD mice through GLP-1/PGC-1alpha pathway. Exp. Neurol. 383, 115001.
    Pubmed CrossRef
  155. Qu, L., Liu, F., Fang, Y., Wang, L., Chen, H., Yang, Q., Dong, H., Jin, L., Wu, W. and Sun, D. (2023) Improvement in zebrafish with diabetes and Alzheimer's disease treated with pasteurized Akkermansia muciniphila. Microbiol. Spectr. 11, e0084923.
    Pubmed KoreaMed CrossRef
  156. Quigley, E.M.M. (2017) Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr. Neurol. NeuroSci. Rep. 17, 94.
    Pubmed CrossRef
  157. Rahimlou, M., Hosseini, S. A., Majdinasab, N., Haghighizadeh, M. H. and Husain, D. (2022a) Effects of long-term administration of Multi-Strain Probiotic on circulating levels of BDNF, NGF, IL-6 and mental health in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Nutr. Neurosci. 25, 411-422.
    Pubmed CrossRef
  158. Rahimlou, M., Nematollahi, S., Husain, D., Banaei-Jahromi, N., Majdinasab, N. and Hosseini, S. A. (2022b) Probiotic supplementation and systemic inflammation in relapsing-remitting multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Front. Neurosci. 16, 901846.
    Pubmed KoreaMed CrossRef
  159. Ren, S., Zhang, X., Guan, H., Wu, L., Yu, M., Hou, D., Yan, Y. and Fang, X. (2021) Lactobacillus acidipiscis induced regulatory gamma delta T cells and attenuated experimental autoimmune encephalomyelitis. Front. Immunol. 12, 623451.
    Pubmed KoreaMed CrossRef
  160. Rezaei Asl, Z., Sepehri, G. and Salami, M. (2019) Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer's disease. Behav. Brain Res. 376, 112183.
    Pubmed CrossRef
  161. Rezaeiasl, Z., Salami, M. and Sepehri, G. (2019) The effects of probiotic Lactobacillus and Bifidobacterium strains on memory and learning behavior, long-term potentiation (LTP), and some biochemical parameters in beta-amyloid-induced rat's model of Alzheimer's disease. Prev. Nutr. Food Sci. 24, 265-273.
    Pubmed KoreaMed CrossRef
  162. Rietdijk, C.D., Perez-Pardo, P., Garssen, J., van Wezel, R. J. and Kraneveld, A. D. (2017) Exploring Braak's hypothesis of Parkinson's disease. Front. Neurol. 8, 37.
    Pubmed KoreaMed CrossRef
  163. Roubaud-Baudron, C., Krolak-Salmon, P., Quadrio, I., Megraud, F. and Salles, N. (2012) Impact of chronic Helicobacter pylori infection on Alzheimer's disease: preliminary results. Neurobiol. Aging 33, 1009.e11-9.
    Pubmed CrossRef
  164. Sahu, B., Johnson, L. M., Sohrabi, M., Usatii, A. A., Craig, R. M. J., Kaelberer, J. B., Chandrasekaran, S. P., Kaur, H., Nookala, S. and Combs, C. K. (2023) Effects of probiotics on colitis-induced exacerbation of Alzheimer's disease in App(NL-G-F) mice. Int. J. Mol. Sci. 24, 11551.
    Pubmed KoreaMed CrossRef
  165. Sajedi, D., Shabani, R. and Elmieh, A. (2021) Changes in leptin, serotonin, and cortisol after eight weeks of aerobic exercise with probiotic intake in a cuprizone-induced demyelination mouse model of multiple sclerosis. Cytokine 144, 155590.
    Pubmed CrossRef
  166. Sajedi, D., Shabani, R. and Elmieh, A. (2023) The effect of aerobic training with the consumption of probiotics on the myelination of nerve fibers in cuprizone-induced demyelination mouse model of multiple sclerosis. Basic Clin. Neurosci. 14, 73-86.
    Pubmed KoreaMed CrossRef
  167. Salehipour, Z., Haghmorad, D., Sankian, M., Rastin, M., Nosratabadi, R., Soltan Dallal, M. M., Tabasi, N., Khazaee, M., Nasiraii, L.R. and Mahmoudi, M. (2017) Bifidobacterium animalis in combination with human origin of Lactobacillus plantarum ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4+ T cell subset balance. Biomed. Pharmacother. 95, 1535-1548.
    Pubmed CrossRef
  168. Samani, S. A., Moloudi, M. R., Ramezanzadeh, R., Abdi, M., Nikkhoo, B., Izadpanah, E., Roshani, D., Abdolahi, A., Esmaili, P. and Hassanzadeh, K. (2022) Oral administration of probiotic enterococcus durans to ameliorate experimental autoimmune encephalomyelitis in mice. Basic Clin. Neurosci. 13, 35-46.
    Pubmed KoreaMed CrossRef
  169. Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M. F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R. and Mazmanian, S. K. (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167, 1469-1480.e12.
    Pubmed KoreaMed CrossRef
  170. Sanborn, V., Azcarate-Peril, M. A., Updegraff, J., Manderino, L. M. and Gunstad, J. (2018) A randomized clinical trial examining the impact of LGG probiotic supplementation on psychological status in middle-aged and older adults. Contemp. Clin. Trials Commun. 12, 192-197.
    Pubmed KoreaMed CrossRef
  171. Sancandi, M., De Caro, C., Cypaite, N., Marascio, N., Avagliano, C., De Marco, C., Russo, E., Constanti, A. and Mercer, A. (2022) Effects of a probiotic suspension Symprove on a rat early-stage Parkinson's disease model. Front. Aging Neurosci. 14, 986127.
    Pubmed KoreaMed CrossRef
  172. Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. and Rastall, R. A. (2019) Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605-616.
    Pubmed CrossRef
  173. Sapko, K., Jamroz-Wisniewska, A. and Rejdak, K. (2022) Novel drugs in a pipeline for progressive multiple sclerosis. J. Clin. Med. 11, 3342.
    Pubmed KoreaMed CrossRef
  174. Saresella, M., Marventano, I., Barone, M., La Rosa, F., Piancone, F., Mendozzi, L., Arma, A., Rossi, V., Pugnetti, L., Roda, G., Casagni, E., Cas, M. D., Paroni, R., Brigidi, P., Turroni, S. and Clerici, M. (2020) Alterations in circulating fatty acid are associated with gut microbiota dysbiosis and inflammation in multiple sclerosis. Front. Immunol. 11, 1390.
    Pubmed KoreaMed CrossRef
  175. Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chetelat, G., Teunissen, C. E., Cummings, J. and van der Flier, W. M. (2021) Alzheimer's disease. Lancet 397, 1577-1590.
    Pubmed CrossRef
  176. Scheperjans, F., Aho, V., Pereira, P. A., Koskinen, K., Paulin, L., Pekkonen, E., Haapaniemi, E., Kaakkola, S., Eerola-Rautio, J., Pohja, M., Kinnunen, E., Murros, K. and Auvinen, P. (2015) Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov. Disord. 30, 350-358.
    Pubmed CrossRef
  177. Seddik, H. A., Bendali, F., Gancel, F., Fliss, I., Spano, G. and Drider, D. (2017) Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob. Proteins 9, 111-122.
    Pubmed CrossRef
  178. Shamsipour, S., Sharifi, G. and Taghian, F. (2021) An 8-week administration of Bifidobacterium bifidum and Lactobacillus plantarum combined with exercise training alleviates neurotoxicity of Abeta and spatial learning via acetylcholine in Alzheimer rat model. J. Mol. Neurosci. 71, 1495-1505.
    Pubmed CrossRef
  179. Sharifa, M., Ghosh, T., Daher, O.A., Bhusal, P., Alaameri, Y. A., Naz, J., Ekhator, C., Bellegarde, S. B., Bisharat, P., Vaghani, V. and Hussain, A. (2023) Unraveling the gut-brain axis in multiple sclerosis: exploring dysbiosis, oxidative stress, and therapeutic insights. Cureus 15, e47058.
    Pubmed KoreaMed CrossRef
  180. Shi, S., Zhang, Q., Sang, Y., Ge, S., Wang, Q., Wang, R. and He, J. (2022) Probiotic Bifidobacterium longum BB68S improves cognitive functions in healthy older adults: a randomized, double-blind, placebo-controlled trial. Nutrients 15, 51.
    Pubmed KoreaMed CrossRef
  181. Smith, C. A., Smith, H., Roberts, L., Coward, L., Gorman, G., Verma, A., Li, Q., Buford, T. W., Carter, C. S. and Jumbo-Lucioni, P. (2022) Probiotic releasing angiotensin (1-7) in a drosophila model of Alzheimer's disease produces sex-specific effects on cognitive function. J. Alzheimers Dis. 85, 1205-1217.
    Pubmed KoreaMed CrossRef
  182. Snigdha, S., Ha, K., Tsai, P., Dinan, T. G., Bartos, J. D. and Shahid, M. (2022) Probiotics: potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan. Pharmacol. Ther. 231, 107978.
    Pubmed CrossRef
  183. Song, X., Zhao, Z., Zhao, Y., Wang, Z., Wang, C., Yang, G. and Li, S. (2022) Lactobacillus plantarum DP189 prevents cognitive dysfunction in D-galactose/AlCl(3) induced mouse model of Alzheimer's disease via modulating gut microbiota and PI3K/Akt/GSK-3beta signaling pathway. Nutr. Neurosci. 25, 2588-2600.
    Pubmed CrossRef
  184. Srivastav, S., Neupane, S., Bhurtel, S., Katila, N., Maharjan, S., Choi, H., Hong, J. T. and Choi, D. Y. (2019) Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J. Nutr. Biochem. 69, 73-86.
    Pubmed CrossRef
  185. Straus Farber, R., Walker, E. L., Diallo, F., Onomichi, K., Riley, C., Zhang, L., Zhu, W., De Jager, P. L. and Xia, Z. (2024) A randomized cross-over trial of prebiotics and probiotics in multiple sclerosis: Trial feasibility, supplement tolerability and symptom abatement. Mult. Scler. Relat. Disord. 89, 105762.
    Pubmed KoreaMed CrossRef
  186. Su, Y., Wang, D., Liu, N., Yang, J., Sun, R. and Zhang, Z. (2023) Clostridium butyricum improves cognitive dysfunction in ICV-STZ-induced Alzheimer's disease mice via suppressing TLR4 signaling pathway through the gut-brain axis. PLoS One 18, e0286086.
    Pubmed KoreaMed CrossRef
  187. Sun, H., Zhao, F., Liu, Y., Ma, T., Jin, H., Quan, K., Leng, B., Zhao, J., Yuan, X., Li, Z., Li, F., Kwok, L. Y., Zhang, S., Sun, Z., Zhang, J. and Zhang, H. (2022) Probiotics synergized with conventional regimen in managing Parkinson's disease. NPJ Parkinsons Dis. 8, 62.
    Pubmed KoreaMed CrossRef
  188. Sun, J., Li, H., Jin, Y., Yu, J., Mao, S., Su, K.P., Ling, Z. and Liu, J. (2021a) Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson's disease via gut microbiota-GLP-1 pathway. Brain Behav. Immun. 91, 703-715.
    Pubmed CrossRef
  189. Sun, J., Xu, J., Yang, B., Chen, K., Kong, Y., Fang, N., Gong, T., Wang, F., Ling, Z. and Liu, J. (2020) Effect of Clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer's disease via regulating gut microbiota and metabolites butyrate. Mol. Nutr. Food Res. 64, e1900636.
    Pubmed CrossRef
  190. Sun, M., Bao, W., Huang, C., Xia, Z., Zhang, C., Wang, G., Wang, R., Li, J., Roux, S., Li, Q., Zou, D., Ma, K. and Bao, X. (2021b) A novel probiotic formula, BIOCG, protects against Alzheimer's-related cognitive deficits via regulation of dendritic spine dynamics. Curr. Alzheimer Res. 18, 558-572.
    Pubmed CrossRef
  191. Sun, M. F. and Shen, Y. Q. (2018) Dysbiosis of gut microbiota and microbial metabolites in Parkinson's disease. Ageing Res. Rev. 45, 53-61.
    Pubmed CrossRef
  192. Sushma, G., Vaidya, B., Sharma, S., Devabattula, G., Bishnoi, M., Kondepudi, K. K. and Sharma, S. S. (2023) Bifidobacterium breve Bif11 supplementation improves depression-related neurobehavioural and neuroinflammatory changes in the mouse. Neuropharmacology 229, 109480.
    Pubmed CrossRef
  193. Swer, N. M., Venkidesh, B. S., Murali, T. S. and Mumbrekar, K. D. (2023) Gut microbiota-derived metabolites and their importance in neurological disorders. Mol. Biol. Rep. 50, 1663-1675.
    Pubmed KoreaMed CrossRef
  194. Tamtaji, O. R., Heidari-Soureshjani, R., Mirhosseini, N., Kouchaki, E., Bahmani, F., Aghadavod, E., Tajabadi-Ebrahimi, M. and Asemi, Z. (2019a) Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer's disease: a randomized, double-blind, controlled trial. Clin. Nutr. 38, 2569-2575.
    Pubmed CrossRef
  195. Tamtaji, O. R., Taghizadeh, M., Daneshvar Kakhaki, R., Kouchaki, E., Bahmani, F., Borzabadi, S., Oryan, S., Mafi, A. and Asemi, Z. (2019b) Clinical and metabolic response to probiotic administration in people with Parkinson's disease: a randomized, double-blind, placebo-controlled trial. Clin. Nutr. 38, 1031-1035.
    Pubmed CrossRef
  196. Tan, A. H., Lim, S. Y., Chong, K. K., Manap, M. A. A., Hor, J. W., Lim, J. L., Low, S. C., Chong, C. W., Mahadeva, S. and Lang, A. E. (2021) Probiotics for constipation in Parkinson disease: a randomized placebo-controlled study. Neurology 96, e772-e782.
    Pubmed CrossRef
  197. Tan, F. H. P., Liu, G., Lau, S. A., Jaafar, M. H., Park, Y. H., Azzam, G., Li, Y. and Liong, M. T. (2020) Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer's disease model and alleviated neurodegeneration in the eye. Benef. Microbes 11, 79-89.
    Pubmed CrossRef
  198. Tankou, S. K., Regev, K., Healy, B. C., Cox, L. M., Tjon, E., Kivisakk, P., Vanande, I. P., Cook, S., Gandhi, R., Glanz, B., Stankiewicz, J. and Weiner, H. L. (2018) Investigation of probiotics in multiple sclerosis. Mult. Scler. 24, 58-63.
    Pubmed CrossRef
  199. Tansey, M. G., Wallings, R. L., Houser, M. C., Herrick, M. K., Keating, C. E. and Joers, V. (2022) Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 22, 657-673.
    Pubmed KoreaMed CrossRef
  200. Taylor, J. P., McKeith, I. G., Burn, D. J., Boeve, B. F., Weintraub, D., Bamford, C., Allan, L. M., Thomas, A. J. and O'Brien, J. T. (2020) New evidence on the management of Lewy body dementia. Lancet Neurol. 19, 157-169.
    Pubmed CrossRef
  201. Thevaranjan, N., Puchta, A., Schulz, C., Naidoo, A., Szamosi, J. C., Verschoor, C. P., Loukov, D., Schenck, L. P., Jury, J., Foley, K. P., Schertzer, J. D., Larche, M. J., Davidson, D. J., Verdu, E. F., Surette, M. G. and Bowdish, D. M. E. (2017) Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455-466.e4.
    Pubmed KoreaMed CrossRef
  202. Thirion, F., Sellebjerg, F., Fan, Y., Lyu, L., Hansen, T. H., Pons, N., Levenez, F., Quinquis, B., Stankevic, E., Sondergaard, H. B., Dantoft, T. M., Poulsen, C. S., Forslund, S. K., Vestergaard, H., Hansen, T., Brix, S., Oturai, A., Sorensen, P. S., Ehrlich, S. D. and Pedersen, O. (2023) The gut microbiota in multiple sclerosis varies with disease activity. Genome Med. 15, 1.
    Pubmed KoreaMed CrossRef
  203. Traini, C., Bulli, I., Sarti, G., Morecchiato, F., Coppi, M., Rossolini, G. M., Di Pilato, V. and Vannucchi, M. G. (2024) Amelioration of serum Abeta levels and cognitive impairment in APPPS1 transgenic mice following symbiotic administration. Nutrients 16, 2381.
    Pubmed KoreaMed CrossRef
  204. Valvaikar, S., Vaidya, B., Sharma, S., Bishnoi, M., Kondepudi, K. K. and Sharma, S. S. (2024) Supplementation of probiotic Bifidobacterium breve Bif11 reverses neurobehavioural deficits, inflammatory changes and oxidative stress in Parkinson's disease model. Neurochem. Int. 174, 105691.
    Pubmed CrossRef
  205. Van de Roovaart, H. J., Nguyen, N. and Veenstra, T. D. (2023) Huntington's disease drug development: a phase 3 pipeline analysis. Pharmaceuticals (Basel) 16, 1513.
    Pubmed KoreaMed CrossRef
  206. Van Es, M. A. (2024) Amyotrophic lateral sclerosis; clinical features, differential diagnosis and pathology. Int. Rev. Neurobiol. 176, 1-47.
    Pubmed CrossRef
  207. van Langelaar, J., Rijvers, L., Smolders, J. and van Luijn, M. M. (2020) B and T cells driving multiple sclerosis: identity, mechanisms and potential triggers. Front. Immunol. 11, 760.
    Pubmed KoreaMed CrossRef
  208. Ventura, R. E., Iizumi, T., Battaglia, T., Liu, M., Perez-Perez, G. I., Herbert, J. and Blaser, M. J. (2019) Gut microbiome of treatment-naive MS patients of different ethnicities early in disease course. Sci. Rep. 9, 16396.
    Pubmed KoreaMed CrossRef
  209. Wakabayashi, K., Tanji, K., Odagiri, S., Miki, Y., Mori, F. and Takahashi, H. (2013) The Lewy body in Parkinson's disease and related neurodegenerative disorders. Mol. Neurobiol. 47, 495-508.
    Pubmed CrossRef
  210. Wang, L., Zhao, Z., Zhao, L., Zhao, Y., Yang, G., Wang, C., Gao, L., Niu, C. and Li, S. (2022a) Lactobacillus plantarum DP189 reduces alpha-SYN aggravation in MPTP-induced Parkinson's disease mice via regulating oxidative damage, inflammation, and gut microbiota disorder. J. Agric. Food Chem. 70, 1163-1173.
    Pubmed CrossRef
  211. Wang, S., Chen, H., Wen, X., Mu, J., Sun, M., Song, X., Liu, B., Chen, J. and Fan, X. (2021) The efficacy of fecal microbiota transplantation in experimental autoimmune encephalomyelitis: transcriptome and gut microbiota profiling. J. Immunol. Res. 2021, 4400428.
    Pubmed KoreaMed CrossRef
  212. Wang, Y., Chen, W. J., Han, Y. Y., Xu, X., Yang, A. X., Wei, J., Hong, D. J., Fang, X. and Chen, T. T. (2023) Neuroprotective effect of engineered Clostridiumbutyricum-pMTL007-GLP-1 on Parkinson's disease mice models via promoting mitophagy. Bioeng. Transl. Med. 8, e10505.
    Pubmed KoreaMed CrossRef
  213. Wang, Y., Wang, D., Lv, H., Dong, Q., Li, J., Geng, W., Wang, J., Liu, F., Jia, L. and Wang, Y. (2022b) Modulation of the gut microbiota and glycometabolism by a probiotic to alleviate amyloid accumulation and cognitive impairments in AD rats. Mol. Nutr. Food Res. 66, e2200265.
    Pubmed CrossRef
  214. Webberley, T. S., Bevan, R. J., Kerry-Smith, J., Dally, J., Michael, D. R., Thomas, S., Rees, M., Morgan, J. E., Marchesi, J. R., Good, M. A., Plummer, S. F., Wang, D. and Hughes, T. R. (2023) Assessment of Lab4P probiotic effects on cognition in 3xTg-AD Alzheimer's disease model mice and the SH-SY5Y neuronal cell line. Int. J. Mol. Sci. 24, 4683.
    Pubmed KoreaMed CrossRef
  215. Woo, J. Y., Gu, W., Kim, K. A., Jang, S. E., Han, M. J. and Kim, D. H. (2014) Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe 27, 22-26.
    Pubmed CrossRef
  216. Wu, H., Wei, J., Zhao, X., Liu, Y., Chen, Z., Wei, K., Lu, J., Chen, W., Jiang, M., Li, S. and Chen, T. (2023a) Neuroprotective effects of an engineered Escherichia coli Nissle 1917 on Parkinson's disease in mice by delivering GLP-1 and modulating gut microbiota. Bioeng. Transl. Med. 8, e10351.
    Pubmed KoreaMed CrossRef
  217. Wu, Y., Niu, X., Li, P., Tong, T., Wang, Q., Zhang, M., Li, Y., Liu, J. and Li, Z. (2023b) Lactobacillaceae improve cognitive dysfunction via regulating gut microbiota and suppressing Abeta deposits and neuroinflammation in APP/PS1 mice. Arch. Microbiol. 205, 118.
    Pubmed CrossRef
  218. Xiao-Hang, Q., Si-Yue, C. and Hui-Dong, T. (2024) Multi-strain probiotics ameliorate Alzheimer's-like cognitive impairment and pathological changes through the AKT/GSK-3beta pathway in senescence-accelerated mouse prone 8 mice. Brain Behav. Immun. 119, 14-27.
    Pubmed CrossRef
  219. Xiao, J., Katsumata, N., Bernier, F., Ohno, K., Yamauchi, Y., Odamaki, T., Yoshikawa, K., Ito, K. and Kaneko, T. (2020) Probiotic Bifidobacterium breve in improving cognitive functions of older adults with suspected mild cognitive impairment: a randomized, double-blind, placebo-controlled trial. J. Alzheimers Dis. 77, 139-147.
    Pubmed KoreaMed CrossRef
  220. Xin, C. and Prasad, A. A. (2020) Probiotics treatment improves hippocampal dependent cognition in a rodent model of Parkinson's disease. Microorganisms 8, 1661.
    Pubmed KoreaMed CrossRef
  221. Xin, Z., Xin, C., Huo, J., Liu, Q., Dong, H., Li, R. and Liu, Y. (2024) Neuroprotective effect of a multistrain probiotic mixture in SOD1(G93A) mice by reducing SOD1 aggregation and targeting the microbiota-gut-brain axis. Mol. Neurobiol. 61, 10051-10071.
    Pubmed KoreaMed CrossRef
  222. Yang, X., He, X., Xu, S., Zhang, Y., Mo, C., Lai, Y., Song, Y., Yan, Z., Ai, P., Qian, Y. and Xiao, Q. (2023a) Effect of Lacticaseibacillus paracasei strain Shirota supplementation on clinical responses and gut microbiome in Parkinson's disease. Food Funct. 14, 6828-6839.
    Pubmed CrossRef
  223. Yang, X., Yu, D., Xue, L., Li, H. and Du, J. (2020) Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm. Sin. B 10, 475-487.
    Pubmed KoreaMed CrossRef
  224. Yang, X. Q., Zhao, Y., Xue, L., Wang, H. S., Zeng, J., Du, J. R. and Xu, Z. (2023b) Probiotics improve cognitive impairment by decreasing bacteria-related pattern recognition receptor-mediated inflammation in the gut-brain axis of mice. J. Integr. Neurosci. 22, 92.
    Pubmed CrossRef
  225. Yue, M., Wei, J., Chen, W., Hong, D., Chen, T. and Fang, X. (2022) Neurotrophic role of the next-generation probiotic strain L. lactis MG1363-pMG36e-GLP-1 on Parkinson's disease via inhibiting ferroptosis. Nutrients 14, 4886.
    Pubmed KoreaMed CrossRef
  226. Zaki, R. M., Ramasamy, K., Ahmad Alwi, N. A., Mohd Yusoff, R. and Lim, S. M. (2024) Pediococcus pentosaceus LAB6- and Lactiplantibacillus plantarum LAB12-derived cell free supernatant inhibited RhoA activation and reduced amyloid-beta in vitro. Probiotics Antimicrob. Proteins 16, 62-75.
    Pubmed CrossRef
  227. Zali, A., Hajyani, S., Salari, M., Tajabadi-Ebrahimi, M., Mortazavian, A. M. and Pakpour, B. (2024) Co-administration of probiotics and vitamin D reduced disease severity and complications in patients with Parkinson's disease: a randomized controlled clinical trial. Psychopharmacology (Berl.) 241, 1905-1914.
    Pubmed CrossRef
  228. Zeng, Q., Shen, J., Chen, K., Zhou, J., Liao, Q., Lu, K., Yuan, J. and Bi, F. (2020) The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients. Sci. Rep. 10, 12998.
    Pubmed KoreaMed CrossRef
  229. Zhang, Y., Wang, Y., Zhou, Z., Yang, Y., Zhao, J., Kang, X., Li, Z., Shen, X., He, F. and Cheng, R. (2024a) Live and heat-inactivated streptococcus thermophilus MN-ZLW-002 mediate the gut-brain axis, alleviating cognitive dysfunction in APP/PS1 mice. Nutrients 16, 4631.
    Pubmed KoreaMed CrossRef
  230. Zhang, Y., Xia, Y. and Sun, J. (2024b) Probiotics and microbial metabolites maintain barrier and neuromuscular functions and clean protein aggregation to delay disease progression in TDP43 mutation mice. Gut Microbes 16, 2363880.
    Pubmed KoreaMed CrossRef
  231. Zhao, M., Chu, J., Feng, S., Guo, C., Xue, B., He, K. and Li, L. (2023) Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: a review. Biomed. Pharmacother. 164, 114985.
    Pubmed CrossRef
  232. Zheng, Y., Bonfili, L., Wei, T. and Eleuteri, A. M. (2023) Understanding the gut-brain axis and its therapeutic implications for neurodegenerative disorders. Nutrients 15, 844.
    Pubmed KoreaMed CrossRef
  233. Zhou, L., Han, D., Wang, X. and Chen, Z. (2023) Probiotic formulation VSL#3 interacts with mesenchymal stromal cells to protect dopaminergic neurons via centrally and peripherally suppressing NOD-like receptor protein 3 inflammasome-mediated inflammation in Parkinson's disease mice. Microbiol. Spectr. 11, e0320822.
    Pubmed KoreaMed CrossRef
  234. Zhu, G., Zhao, J., Wang, G. and Chen, W. (2023) Bifidobacterium breve HNXY26M4 attenuates cognitive deficits and neuroinflammation by regulating the gut-brain axis in APP/PS1 mice. J. Agric. Food Chem. 71, 4646-4655.
    Pubmed CrossRef


This Article


Cited By Articles
  • CrossRef (0)

Funding Information

Services
Social Network Service

e-submission

Archives