Abbott, R. D., Ross, G. W., Tanner, C. M., Andersen, J. K., Masaki, K. H., Rodriguez, B. L., White, L. R. and Petrovitch, H. (2012) Late-life hemoglobin and the incidence of Parkinson's disease. Neurobiol. Aging 33, 914-920.
Abramov, A. Y., Potapova, E. V., Dremin, V. V. and Dunaev, A. V. (2020) Interaction of oxidative stress and misfolded proteins in the mechanism of neurodegeneration. Life 10, 1-14.
Akhter, N., Madhoun, A., Arefanian, H., Wilson, A., Kochumon, S., Thomas, R., Shenouda, S., Al-Mulla, F., Ahmad, R. and Sindhu, S. (2019) Oxidative stress induces expression of the toll-like receptors (TLRs) 2 and 4 in the human peripheral blood mononuclear cells: implications for metabolic inflammation. Cell Physiol. Biochem. 53, 1-18.
Akira, S. and Takeda, K. (2004) Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499-511.
Alhamdan, F., Bayarsaikhan, G. and Yuki, K. (2024) Toll-like receptors and integrins crosstalk. Front. Immunol. 15, 1403764.
Alqahtani, T., Deore, S. L., Kide, A. A., Shende, B. A., Sharma, R., Dadarao Chakole, R., Nemade, L. S., Kishor Kale, N., Borah, S., Shrikant Deokar, S., Behera, A., Dhawal Bhandari, D., Gaikwad, N., Kalam Azad, A. and Ghosh, A. (2023) Mitochondrial dysfunction and oxidative stress in Alzheimer's disease, and Parkinson's disease, Huntington's disease and Amyotrophic Lateral Sclerosis -an updated review. Mitochondrion 71, 83-92.
Altinoz, M. A., Guloksuz, S., Schmidt-Kastner, R., Kenis, G., Ince, B. and Rutten, B. P. F. (2019) Involvement of hemoglobins in the pathophysiology of Alzheimer's disease. Exp. Gerontol. 126, 110680.
Asher, C., De Villiers, K. A. and Egan, T. J. (2009) Speciation of ferriprotoporphyrin IX in aqueous and mixed aqueous solution is controlled by solvent identity, pH, and salt concentration. Inorg. Chem. 48, 7994-8003.
Bamm, V. V., Lanthier, D. K., Stephenson, E. L., Smith, G. S. T. and Harauz, G. (2015) In vitro study of the direct effect of extracellular hemoglobin on myelin components. Biophys. Acta Mol. Basis Dis. 1852, 92-103.
Banesh, S., Layek, S. and Trivedi, V. (2022) Hemin acts as CD36 ligand to activate down-stream signalling to disturb immune responses and cytokine secretion from macrophages. Immunol. Lett. 243, 1-18.
Barnham, K. J., Masters, C. L. and Bush, A. I. (2004) Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205-214.
Bartman, S., Coppotelli, G. and Ross, J. M. (2024) Mitochondrial dysfunction: a key player in brain aging and diseases. Curr. Issues Mol. Biol. 46, 1987-2026.
Biagioli, M., Pinto, M., Cesselli, D., Zaninello, M., Lazarevic, D., Roncaglia, P., Simone, R., Vlachouli, C., Plessy, C., Bertin, N., Beltrami, A., Kobayashi, K., Gallo, V., Santoro, C., Ferrer, I., Rivella, S., Beltrami, C. A., Carninci, P., Raviola, E. and Gustincich, S. (2009) Unexpected expression of α- and β-globin in mesencephalic dopaminergic neurons and glial cells. Proc. Natl. Acad. Sci. U. S. A. 106, 15454-15459.
Bianchi, R., Giambanco, I. and Donato, R. (2010) S100B/RAGE-dependent activation of microglia via NF-κB and AP-1: co-regulation of COX-2 expression by S100B, IL-1β and TNF-α. Neurobiol. Aging 31, 665-677.
Bozza, M. T. and Jeney, V. (2020) Pro-inflammatory actions of heme and other hemoglobin-derived DAMPs. Front. Immunol. 11, 548128.
Bustamante-Barrientos, F. A., Luque-Campos, N., Araya, M. J., Lara-Barba, E., de Solminihac, J., Pradenas, C., Molina, L., Herrera-Luna, Y., Utreras-Mendoza, Y., Elizondo-Vega, R., Vega-Letter, A. M. and Luz-Crawford, P. (2023) Mitochondrial dysfunction in neurodegenerative disorders: potential therapeutic application of mitochondrial transfer to central nervous system-residing cells. J. Transl. Med. 21, 1-27.
Butt, O. I., Buehler, P. W. and D'Agnillo, F. (2011) Blood-brain barrier disruption and oxidative stress in guinea pig after systemic exposure to modified cell-free hemoglobin. Am. J. Pathol. 178, 1316.
Campomayor, N. B., Kim, H. J., Lee, H. J., Sayson, L. V., Ortiz, D. M. D., Cho, E., Kim, D. H., Jeon, S. J., Kim, B. N., Cheong, J. H. and Kim, M. (2024) Impact and interrelationships of striatal proteins, EPHB2, OPRM1, and PER2 on mild cognitive impairment. Mol. Neurobiol. 62, 1478-1492.
Canton, M., Sánchez-Rodríguez, R., Spera, I., Venegas, F. C., Favia, M., Viola, A. and Castegna, A. (2021) Reactive oxygen species in macrophages: sources and targets. Front. Immunol. 12, 734229.
Casali, B. T. and Reed-Geaghan, E. G. (2021) microglial function and regulation during development, homeostasis and Alzheimer's disease. Cells 10, 957.
Chakraborty, R., Dey, S., Sil, P., Paul, S. S., Bhattacharyya, D., Bhunia, A., Sengupta, J. and Chattopadhyay, K. (2021) Conformational distortion in a fibril-forming oligomer arrests alpha-Synuclein fibrillation and minimizes its toxic effects. Commun. Biol. 4, 518.
Checa, J. and Aran, J. M. (2020) Reactive oxygen species: drivers of physiological and pathological processes. J. Inflamm. Res. 13, 1057.
Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K. and Xu, H. E. (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38, 1205-1235.
Chen, L., Yang, Z. and Liu, H. (2023) Hemoglobin-based oxygen carriers: where are we now in 2023? Medicina (B Aires) 59, 396.
Chen, M., Song, H., Cui, J., Johnson, C. E., Hubler, G. K., Depalma, R. G., Gu, Z. and Xia, W. (2018) Proteomic profiling of mouse brains exposed to blast-induced mild traumatic brain injury reveals changes in axonal proteins and phosphorylated tau. J. Alzheimers Dis. 66, 751.
Chen, T., Dai, Y., Hu, C., Lin, Z., Wang, S., Yang, J., Zeng, L., Li, S. and Li, W. (2024) Cellular and molecular mechanisms of the blood-brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 21, 60.
Chiziane, E., Telemann, H., Krueger, M., Adle, J., Arnhold, J., Alia, A. and Flemmig, J. (2018) Free heme and amyloid-β: a fatal liaison in Alzheimer's disease. J. Alzheimers Dis. 61, 963-984.
Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M. and Chan, F. K. M. (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112-1123.
Chuang, J. Y., Lee, C. W., Shih, Y. H., Yang, T., Yu, L. and Kuo, Y. M. (2012) Interactions between amyloid-β and hemoglobin: implications for amyloid plaque formation in Alzheimer's disease. PLoS One 7, e33120.
Ciesielska, A., Matyjek, M. and Kwiatkowska, K. (2021) TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol. Life Sci. 78, 1233.
Conte, C., Ingrassia, A., Breve, J., Bol, J. J., Timmermans-Huisman, E., van Dam, A. M., Beccari, T. and van de Berg, W. D. J. (2023) Toll-like receptor 4 is upregulated in Parkinson's disease patients and co-localizes with pSer129αSyn: a possible link with the pathology. Cells 12, 1368.
Cooper, G. M. (2000) The Cell: a Molecular Approach. Sinauer Associates., Massachusetts.
Cox, K. H., Ofek, I. and Hasty, D. L. (2007) Enhancement of macrophage stimulation by lipoteichoic acid and the costimulant hemoglobin is dependent on toll-like receptors 2 and 4. Infect. Immun. 75, 2638-2641.
Cullen, K. M., Kócsi, Z. and Stone, J. (2006) Microvascular pathology in the aging human brain: evidence that senile plaques are sites of microhaemorrhages. Neurobiol. Aging 27, 1786-1796.
Dallas, M. L. and Widera, D. (2021) TLR2 and TLR4-mediated inflammation in Alzheimer's disease: self-defense or sabotage? Neural. Regen. Res. 16, 1552.
Ding, Z., Bin, Song, L. J., Wang, Q., Kumar, G., Yan, Y. Q. and Ma, C. G. (2021) Astrocytes: a double-edged sword in neurodegenerative diseases. Neural. Regen. Res. 16, 1702.
Ding, R., Chen, Y., Yang, S., Deng, X., Fu, Z., Feng, L., Cai, Y., Du, M., Zhou, Y. and Tang, Y. (2014) Blood-brain barrier disruption induced by hemoglobin in vivo: Involvement of up-regulation of nitric oxide synthase and peroxynitrite formation. Brain Res. 1571, 25-38.
Drvenica, I. T., Stančić, A. Z., Maslovarić, I. S., Trivanović, D. I. and Ilić, V. L. (2022) Extracellular hemoglobin: modulation of cellular functions and pathophysiological effects. Biomolecules 12, 1708.
Dutta, D., Jana, M., Majumder, M., Mondal, S., Roy, A. and Pahan, K. (2021) Selective targeting of the TLR2/MyD88/NF-κB pathway reduces α-synuclein spreading in vitro and in vivo. Nat. Comm. 12, 1-19.
Dutta, D., Jana, M., Paidi, R. K., Majumder, M., Raha, S., Dasarathy, S. and Pahan, K. (2023) Tau fibrils induce glial inflammation and neuropathology via TLR2 in Alzheimer's disease-related mouse models. J. Clin. Invest. 133, e161987.
Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495.
Etzerodt, A., Kjolby, M., Nielsen, M. J., Maniecki, M., Svendsen, P. and Moestrup, S. K. (2013) Plasma clearance of hemoglobin and haptoglobin in mice and effect of CD163 gene targeting disruption. Antioxid. Redox Signal. 18, 2254-2263.
Fairley, L. H., Lai, K. O., Wong, J. H., Chong, W. J., Vincent, A. S., D'Agostino, G., Wu, X., Naik, R. R., Jayaraman, A., Langley, S. R., Ruedl, C. and Barron, A. M. (2023) Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer's disease. Proc. Natl. Acad. Sci. U. S. A. 120, e2209177120.
Fang, F., Lue, L.-F., Yan, S., Xu, H., Luddy, J. S., Chen, D., Walker, D. G., Stern, D. M., Yan, S., Schmidt, A. M., Chen, J. X. and Yan, S. S. (2010) RAGE-dependent signaling in microglia contributes to neuroinflammation, Aβ accumulation, and impaired learning/memory in a mouse model of Alzheimer's disease. FASEB J. 24, 1043.
Fan, H., Tang, H., Bin, Chen, Z., Wang, H. Q., Zhang, L., Jiang, Y., Li, T., Yang, C. F., Wang, X. Y., Li, X., Wu, S. X. and Zhang, G. L. (2020) Inhibiting HMGB1-RAGE axis prevents pro-inflammatory macrophages/microglia polarization and affords neuroprotection after spinal cord injury. J. Neuroinflammation 17, 295.
Fassbender, K., Walter, S., Kühl, S., Landmann, R., Ishii, K., Bertsch, T., Stalder, A. K., Muehlhauser, F., Liu, Y., Ulmer, A. J., Rivest, S., Lentschat, A., Gulbins, E., Jucker, M., Staufenbiel, M., Brechtel, K., Walter, J., Multhaup, G., Penke, B., Adachi, Y., Hartmann, T. and Beyreuther, K. (2004) The LPS receptor (CD14) links innate immunity with Alzheimer's disease. FASEB J. 18, 203-205.
Fellner, L., Irschick, R., Schanda, K., Reindl, M., Klimaschewski, L., Poewe, W., Wenning, G. K. and Stefanova, N. (2013) Toll-like receptor 4 is required for α-synuclein dependent activation of microglia and astroglia. Glia 61, 349.
Fernandez, P. L., Dutra, F. F., Alves, L., Figueiredo, R. T., Mourão-Sa, D., Fortes, G. B., Bergstrand, S., Lönn, D., Cevallos, R. R., Pereira, R. M. S., Lopes, U. G., Travassos, L. H., Paiva, C. N. and Bozza, M. T. (2010) Heme amplifies the innate immune response to microbial molecules through spleen tyrosine kinase (Syk)-dependent reactive oxygen species generation. J. Biol. Chem. 285, 32844-32851.
Ferreira, S. A. and Romero-Ramos, M. (2018) Microglia response during Parkinson's disease: alpha-synuclein intervention. Front. Cell Neurosci. 12, 247.
Ferrer, I., Gómez, A., Carmona, M., Huesa, G., Porta, S., Riera-Codina, M., Biagioli, M., Gustincich, S. and Aso, E. (2011) Neuronal hemoglobin is reduced in Alzheimer's disease, argyrophilic grain disease, Parkinson's disease, and dementia with Lewy bodies. J. Alzheimers Dis. 23, 537-550.
Fiebich, B. L., Batista, C. R. A., Saliba, S. W., Yousif, N. M. and de Oliveira, A. C. P. (2018) Role of microglia TLRs in neurodegeneration. Front. Cell Neurosci. 12, 329.
Figueiredo, R. T., Fernandez, P. L., Mourao-Sa, D. S., Porto, B. N., Dutra, F. F., Alves, L. S., Oliveira, M. F., Oliveira, P. L., Graça-Souza, A. V. and Bozza, M. T. (2007) Characterization of heme as activator of toll-like receptor 4. J. Biol. Chem. 282, 20221-20229.
Flemmig, J., Zámocký, M. and Alia, A. (2018) Amyloid β and free heme: bloody new insights into the pathogenesis of Alzheimer's disease. Neural Regen. Res. 13, 1170.
Franco, R. S. (2012) Measurement of red cell lifespan and aging. Transfus. Med. Hemother. 39, 302.
Franco, R. S., Puchulu-Campanella, M. E., Barber, L. A., Palascak, M. B., Joiner, C. H., Low, P. S. and Cohen, R. M. (2013) Changes in the properties of normal human red blood cells during in vivo aging. Am. J. Hematol. 88, 44.
Freed, J. and Chakrabarti, L. (2016) Defining a role for hemoglobin in Parkinson's disease. NPJ Parkinsons Dis. 2, 1-4.
Ganz, T. (2012) Macrophages and systemic iron homeostasis. J. Innate Immun. 4, 446-453.
Ghosh, C., Seal, M., Mukherjee, S. and Ghosh Dey, S. (2015) Alzheimer's disease: a heme-Aβ perspective. Acc. Chem. Res. 48, 2556-2564.
Gleave, J. A., Arathoon, L. R., Trinh, D., Lizal, K. E., Giguère, N., Barber, J. H. M., Najarali, Z., Khan, M. H., Thiele, S. L., Semmen, M. S., Koprich, J. B., Brotchie, J. M., Eubanks, J. H., Trudeau, L. E. and Nash, J. E. (2017) Sirtuin 3 rescues neurons through the stabilisation of mitochondrial biogenetics in the virally-expressing mutant α-synuclein rat model of parkinsonism. Neurobiol. Dis. 106, 133-146.
Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. and Crowther, R. A. (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3, 519-526.
Gozzelino, R., Jeney, V. and Soares, M. P. (2010) Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323-354.
Guo, Q., Jin, Y., Chen, X., Ye, X., Shen, X., Lin, M., Zeng, C., Zhou, T. and Zhang, J. (2024) NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct. Target. Ther. 9, 1-37.
Gwozdzinski, K., Pieniazek, A. and Gwozdzinski, L. (2021) Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease. Oxid. Med. Cell. Longev. 2021, 6639199.
Hartsock, A. and Nelson, W. J. (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 1778, 660.
Hayden, E. Y., Kaur, P., Williams, T. L., Matsui, H., Yeh, S. R. and Rousseau, D. L. (2015) Heme stabilization of α-synuclein oligomers during amyloid fibril formation. Biochemistry 54, 4599-4610.
Houldsworth, A. (2024) Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants. Brain Commun. 6, fcad356.
Hsia, N. and Everse, J. (1996) The cytotoxic activities of human hemoglobin and diaspirin crosslinked hemoglobin. Artif. Cells Blood Substit. Immobil. Biotechnol. 24, 533-551.
Ingham, V., Williams, A. and Bate, C. (2014) Glimepiride reduces CD14 expression and cytokine secretion from macrophages. J. Neuroinflammation 11, 1-14.
Janciauskiene, S., Vijayan, V. and Immenschuh, S. (2020) TLR4 signaling by heme and the role of heme-binding blood proteins. Front. Immunol. 11, 1964.
Jeney, V., Balla, J., Yachie, A., Varga, Z., Vercellotti, G. M., Eaton, J. W. and Balla, G. (2002) Pro-oxidant and cytotoxic effects of circulating heme. Blood 100, 879-887.
Kadry, H., Noorani, B. and Cucullo, L. (2020) A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. FBCNS 17, 1-24.
Kalmovarin, N., Friedrichs, W. E., O'brien, H. V., Linehan, L. A., Bowman, B. H. and Yang, F. (1991) Extrahepatic expression of plasma protein genes during inflammation. Inflammation 15, 369-379.
Karnaukhova, E., Owczarek, C., Schmidt, P., Schaer, D. J. and Buehler, P. W. (2021) Human plasma and recombinant hemopexins: heme binding revisited. Int. J. Mol. Sci. 22, 1-18.
Kavoosi, G., Ardestani, S. K. and Kariminia, A. (2009) The involvement of TLR2 in cytokine and reactive oxygen species (ROS) production by PBMCs in response to Leishmania major phosphoglycans (PGs). Parasitology 136, 1193-1199.
Kefaloyianni, E., Gaitanaki, C. and Beis, I. (2006) ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell. Signal. 18, 2238-2251.
Kim, C., Ho, D. H., Suk, J. E., You, S., Michael, S., Kang, J., Lee, S. J., Masliah, E., Hwang, D., Lee, H. J. and Lee, S. J. (2013) Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat. Commun. 4, 1562.
Kim, G. H., Kim, J. E., Rhie, S. J. and Yoon, S. (2015) The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol. 24, 325.
Kim, H. J., Kim, H., Lee, J. H. and Hwangbo, C. (2023a) Toll-like receptor 4 (TLR4): new insight immune and aging. Immun. Ageing 20, 1-11.
Kim, I. K., Lee, J. H., Kim, H. S., Kwon, O. J. and Shim, B. S. (1995) A novel function of haptoglobin: haptoglobin-haemoglobin complex induces apoptosis of hepatocarcinomatous Hep 3B cells. Scand. J. Clin. Lab. Invest. 55, 529-535.
Kim, J. W., Byun, M. S., Yi, D., Lee, J. H., Jeon, S. Y., Ko, K., Joung, H., Jung, G., Lee, J. Y., Sohn, C. H., Lee, Y. S., Kim, Y. K. and Lee, D. Y. (2021) blood hemoglobin, in-vivo Alzheimer pathologies, and cognitive impairment: a cross-sectional study. Front. Aging Neurosci. 13, 625511.
Kim, J.-Y., Kim, W.-J., Kim, H., Suk, K. and Lee, W.-H. (2009) The stimulation of CD147 induces MMP-9 expression through ERK and NF-κB in macrophages: implication for atherosclerosis. Immune Netw. 9, 90.
Kim, Y., Park, H., Kim, Y., Kim, S. H., Lee, J. H., Yang, H., Kim, S. J., Li, C. M., Lee, H., Na, D. H., Moon, S., Shin, Y., Kam, T. I., Lee, H. W., Kim, S. Y., Song, J. J. and Jung, Y. K. (2023b) Pathogenic role of RAGE in tau transmission and memory deficits. Biol. Psychiatry 93, 829-841.
Korashy, H. M. and El-Kadi, A. O. S. (2008) The role of redox-sensitive transcription factors NF-κB and AP-1 in the modulation of the Cyp1a1 gene by mercury, lead, and copper. Free Radic. Biol. Med. 44, 795-806.
Kouli, A., Horne, C. B. and Williams-Gray, C. H. (2019) Toll-like receptors and their therapeutic potential in Parkinson's disease and α-synucleinopathies. Brain Behav. Immun. 81, 41-51.
Kwon, H. S. and Koh, S. H. (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 9, 1-12.
Laksitorini, M., Prasasty, V. D., Kiptoo, P. K. and Siahaan, T. J. (2014) Pathways and progress in improving drug delivery through the intestinal mucosa and blood-brain barriers. Ther. Deliv. 5, 1143.
Lara, F. A., Kahn, S. A., da Fonseca, A. C., Bahia, C. P., Pinho, J. P., Graca-Souza, A., Houzel, J. C., de Oliveira, P. L., Moura-Neto, V. and Oliveira, M. F. (2009) On the fate of extracellular hemoglobin and heme in brain. JCBFM 29, 1109-1120.
Le Blanc, S., Garrick, M. D. and Arredondo, M. (2012) Heme carrier protein 1 transports heme and is involved in heme-Fe metabolism. Am. J. Physiol. Cell Physiol. 302, C1780-C1785.
Lee, Y. J., Cho, H. N., Soh, J. W., Jhon, G. J., Cho, C. K., Chung, H. Y., Bae, S., Lee, S. J. and Lee, Y. S. (2003) Oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation. Exp. Cell Res. 291, 251-266.
Li, J., McQuade, T., Siemer, A. B., Napetschnig, J., Moriwaki, K., Hsiao, Y. S., Damko, E., Moquin, D., Walz, T., McDermott, A., Chan, F. K. M. and Wu, H. (2012) The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339.
Lingappan, K. (2018) NF-κB in oxidative stress. Curr. Opin. Toxicol. 7, 81-86.
Li, T., Shi, W., Ho, M. S. and Zhang, Y. Q. (2024) A Pvr-AP-1-Mmp1 signaling pathway is activated in astrocytes upon traumatic brain injury. Elife 12, RP87258.
Liu, Y., Carver, J. A., Ho, L. H., Elias, A. K., Musgrave, I. F. and Pukala, T. L. (2014) Hemin as a generic and potent protein misfolding inhibitor. Biochem. Biophys. Res. Commun. 454, 295-300.
Liu, Y., Walter, S., Stagi, M., Cherny, D., Letiembre, M., Schulz-Schaeffer, W., Heine, H., Penke, B., Neumann, H. and Fassbender, K. (2005) LPS receptor (CD14): a receptor for phagocytosis of Alzheimer's amyloid peptide. Brain 128, 1778-1789.
Lua, J., Ekanayake, K., Fangman, M. and Doré, S. (2021) Potential role of soluble toll-like receptors 2 and 4 as therapeutic agents in stroke and brain hemorrhage. Int. J. Mol. Sci. 22, 9977.
Lue, L. F., Walker, D. G., Brachova, L., Beach, T. G., Rogers, J., Schmidt, A. M., Stern, D. M. and Yan, S. D. (2001) Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer's disease: identification of a cellular activation mechanism. Exp. Neurol. 171, 29-45.
Lu, N., Li, J., Tian, R. and Peng, Y. Y. (2014) Key roles of Arg5, Tyr10 and His residues in Aβ-heme peroxidase: relevance to Alzheimer's disease. Biochem. Biophys. Res. Commun. 452, 676-681.
Manoharan, S., Guillemin, G. J., Abiramasundari, R. S., Essa, M. M., Akbar, M. and Akbar, M. D. (2016) The role of reactive oxygen species in the pathogenesis of Alzheimer's disease, Parkinson's disease, and Huntington's disease: a mini review. Oxid. Med. Cell. Longev. 2016, 8590578.
Masuda, M., Suzuki, N., Taniguchi, S., Oikawa, T., Nonaka, T., Iwatsubo, T., Hisanaga, S. I., Goedert, M. and Hasegawa, M. (2006) Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry 45, 6085-6094.
McCormick, D. J. and Atassi, M. Z. (1990) Hemoglobin binding with haptoglobin: Delineation of the haptoglobin binding site on the α-chain of human hemoglobin. J. Protein Chem. 9, 735-742.
McDonald, C. L., Hennessy, E., Rubio-Araiz, A., Keogh, B., McCormack, W., McGuirk, P., Reilly, M. and Lynch, M. A. (2016) Inhibiting TLR2 activation attenuates amyloid accumulation and glial activation in a mouse model of Alzheimer's disease. Brain Behav. Immun. 58, 191-200.
Meegan, J. E., Shaver, C. M., Putz, N. D., Jesse, J. J., Landstreet, S. R., Lee, H. N. R., Sidorova, T. N., Brennan McNeil, J., Wynn, J. L., Cheung-Flynn, J., Komalavilas, P., Brophy, C. M., Ware, L. B. and Bastarache, J. A. (2020) Cell-free hemoglobin increases inflammation, lung apoptosis, and microvascular permeability in murine polymicrobial sepsis. PLoS One 15, e0228727.
Meguro, T., Chen, B., Parent, A. D. and Zhang, J. H. (2001) Caspase inhibitors attenuate oxyhemoglobin-induced apoptosis in endothelial cells. Stroke 32, 561-566.
Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. and Malik, A. B. (2014) reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126.
Moda, F., Ciullini, A., Dellarole, I. L., Lombardo, A., Campanella, N., Bufano, G., Cazzaniga, F. A. and Giaccone, G. (2023) Secondary protein aggregates in neurodegenerative diseases: almost the rule rather than the exception. Front. Biosci. Landmark 28, 255.
Monaco, A. and Fraldi, A. (2020) Protein aggregation and dysfunction of autophagy-lysosomal pathway: a vicious cycle in lysosomal storage diseases. Front. Mol. Neurosci. 13, 520644.
Montaser-Kouhsari, L., Young, C. B. and Poston, K. L. (2022) Neuroimaging approaches to cognition in Parkinson's disease. Prog. Brain Res. 269, 257-286.
Morgan, M. J. and Liu, Z. G. (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21, 103-115.
Muroi, M. and Tanamoto, K. (2008) TRAF6 distinctively mediates MyD88- and IRAK-1-induced activation of NF-kappaB. J. Leukoc. Biol. 83, 702-707.
Nagababu, E., Fabry, M. E., Nagel, R. L. and Rifkind, J. M. (2008) Heme degradation and oxidative stress in murine models for hemoglobinopathies: thalassemia, sickle cell disease and hemoglobin C disease. Blood Cells Mol. Dis. 41, 60-66.
Nagyoszi, P., Wilhelm, I., Farkas, A. E., Fazakas, C., Dung, N. T. K., Haskó, J. and Krizbai, I. A. (2010) Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem. Int. 57, 556-564.
Na, K., Oh, B. C. and Jung, Y. J. (2023) Multifaceted role of CD14 in innate immunity and tissue homeostasis. Cytokine Growth Factor Rev. 74, 100-107.
Nimz, J. G., Rerkshanandana, P., Kloypan, C., Kalus, U., Chaiwaree, S., Pruß, A., Georgieva, R., Xiong, Y. and Bäumler, H. (2023) Recognition mechanisms of hemoglobin particles by monocytes - CD163 may just be one. Beilstein J. Nanotechnol. 14, 1028-1040.
Nonaka, T. and Hasegawa, M. (2009) A cellular model to monitor proteasome dysfunction by α-synuclein. Biochemistry 48, 8014-8022.
Norat, P., Soldozy, S., Sokolowski, J. D., Gorick, C. M., Kumar, J. S., Chae, Y., Yağmurlu, K., Prada, F., Walker, M., Levitt, M. R., Price, R. J., Tvrdik, P. and Kalani, M. Y. S. (2020) Mitochondrial dysfunction in neurological disorders: exploring mitochondrial transplantation. NPJ Regen. Med. 5, 1-9.
Ori-McKenney, K. M. and McKenney, R. J. (2024) Tau oligomerization on microtubules in health and disease. Cytoskeleton 81, 35-40.
Ovalle, R. (2022) In: In Reactive Oxygen Species (R. Ahmad, Ed.), pp. 228-242. IntechOpen, London.
Oyama, R., Yamamoto, H. and Titani, K. (2000) Glutamine synthetase, hemoglobin alpha-chain, and macrophage migration inhibitory factor binding to amyloid beta-protein: their identification in rat brain by a novel affinity chromatography and in Alzheimer's disease brain by immunoprecipitation. Biochem. Biophys. Acta 1479, 91-102.
Pal, I. and Dey, S. G. (2023) The role of heme and copper in Alzheimer's disease and type 2 diabetes mellitus. JACS Au 3, 657-681.
Pandya, C. D., Vekaria, H., Joseph, B., Slone, S. A., Gensel, J. C., Sullivan, P. G. and Miller, B. A. (2021) Hemoglobin induces oxidative stress and mitochondrial dysfunction in oligodendrocyte progenitor cells. Transl. Res. 231, 13-23.
Park, C., Cha, H. J., Lee, H., Kim, G. Y. and Choi, Y. H. (2021) The regulation of the TLR4/NF-κB and Nrf2/HO-1 signaling pathways is involved in the inhibition of lipopolysaccharide-induced inflammation and oxidative reactions by morroniside in RAW 264.7 macrophages. Arch. Biochem. Biophys. 706, 108926.
Park, J. H., Burgess, J. D., Faroqi, A. H., Demeo, N. N., Fiesel, F. C., Springer, W., Delenclos, M. and McLean, P. J. (2020) Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Mol. Neurodegener. 15, 5.
Peters, R., Burch, L., Warner, J., Beckett, N., Poulter, R. and Bulpitt, C. (2008) Haemoglobin, anaemia, dementia and cognitive decline in the elderly, a systematic review. BMC Geriatr. 8, 18.
Pfefferlé, M., Ingoglia, G., Schaer, C. A., Yalamanoglu, A., Buzzi, R., Dubach, I. L., Tan, G., López-Cano, E. Y., Schulthess, N., Hansen, K., Humar, R., Schaer, D. J. and Vallelian, F. (2020) Hemolysis transforms liver macrophages into antiinflammatory erythrophagocytes. J. Clin. Invest. 130, 5576-5590.
Pirota, V., Monzani, E., Dell'Acqua, S. and Casella, L. (2016) Interactions between heme and tau-derived R1 peptides: binding and oxidative reactivity. Dalton Trans. 45, 14343-14351.
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. and Bitto, A. (2017) Oxidative stress: harms and benefits for human health. Oxid. Med. Cell Longev. 2017, 8416763.
Porto, B. N., Alves, L. S., Fernández, P. L., Dutra, T. P., Figueiredo, R. T., Graça-Souza, A. V. and Bozza, M. T. (2007) Heme induces neutrophil migration and reactive oxygen species generation through signaling pathways characteristic of chemotactic receptors. J. Biol. Chem. 282, 24430-24436.
Pramanik, D. and Dey, S. G. (2011) Active site environment of heme-bound amyloid β peptide associated with Alzheimers disease. J. Am. Chem. Soc. 133, 81-87.
Qin, Z., Babu, V. S., Li, Y., Shi, F., Zhan, F., Liu, C., Li, J. and Lin, L. (2022) Hemoglobin mediates inflammation and apoptosis in the head-kidney macrophages of grass carp (Ctenopharyngodon idella). Aquaculture 557, 738281.
Quero, L., Hanser, E., Manigold, T., Tiaden, A. N. and Kyburz, D. (2017) TLR2 stimulation impairs anti-inflammatory activity of M2-like macrophages, generating a chimeric M1/M2 phenotype. Arthritis. Res. Ther. 19, 1-13.
Ramos-González, E. J., Bitzer-Quintero, O. K., Ortiz, G., Hernández-Cruz, J. J. and Ramírez-Jirano, L. J. (2024) Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurología 39, 292-301.
Redza-Dutordoir, M. and Averill-Bates, D. A. (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 1863, 2977-2992.
Reed-Geaghan, E. G., Savage, J. C., Hise, A. G. and Landreth, G. E. (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar aβ-stimulated microglial activation. J. Neurosci. 29, 11982.
Rifkind, J. M., Mohanty, J. G. and Nagababu, E. (2015) The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Front. Physiol. 6, 117808.
Rodríguez-Gómez, J. A., Kavanagh, E., Engskog-Vlachos, P., Engskog, M. K. R., Herrera, A. J., Espinosa-Oliva, A. M., Joseph, B., Hajji, N., Venero, J. L. and Burguillos, M. A. (2020) Microglia: agents of the CNS Pro-inflammatory response. Cells 9, 1717.
Roh, J. S. and Sohn, D. H. (2018) Damage-associated molecular patterns in inflammatory diseases. Immune. Netw. 18, e27.
Rong, S., Yang, C., Wang, F., Wu, Y., Sun, K., Sun, T. and Wu, Z. (2022) Amentoflavone exerts anti-neuroinflammatory effects by inhibiting TLR4/MyD88/NF-κB and activating Nrf2/HO-1 pathway in lipopolysaccharide-induced BV2 microglia. Mediators Inflamm. 2022, 5184721.
Ross, C. A. and Poirier, M. A. (2004) Protein aggregation and neurodegenerative disease. Nat. Med. 10, S10-S17.
Ross, C. A. and Poirier, M. A. (2005) What is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell Biol. 6, 891-898.
Ruysschaert, J. M. and Lonez, C. (2015) Role of lipid microdomains in TLR-mediated signalling. Biochim. Biophys. Acta Biomembr. 1848, 1860-1867.
Saha, P., Guha, S. and Biswas, S. C. (2020) P38K and JNK pathways are induced by amyloid-β in astrocyte: implication of MAPK pathways in astrogliosis in Alzheimer's disease. Mol. Cell. Neurosci. 108, 103551.
Sankar, S. B., Donegan, R. K., Shah, K. J., Reddi, A. R. and Wood, L. B. (2018) Heme and hemoglobin suppress amyloid β-mediated inflammatory activation of mouse astrocytes. J. Biol. Chem. 293, 11358.
Savica, R., Grossardt, B. R., Carlin, J. M., Icen, M., Bower, J. H., Ahlskog, J. E., Maraganore, D. M., Steensma, D. P. and Rocca, W. A. (2009) Anemia or low hemoglobin levels preceding Parkinson disease: a case-control study. Neurology 73, 1381-1387.
Sbai, O., Djelloul, M., Auletta, A., Ieraci, A., Vascotto, C. and Perrone, L. (2022) RAGE-TXNIP axis drives inflammation in Alzheimer's by targeting Aβ to mitochondria in microglia. CDDIS 13, 1-12.
Schaer, D. J., Buehler, P. W., Alayash, A. I., Belcher, J. D. and Vercellotti, G. M. (2013) Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121, 1276.
Schieber, M. and Chandel, N. S. (2014) ROS function in redox signaling and oxidative stress. Curr. Biol. 24, 453.
Schmitz, G. and Orsó, E. (2002) CD14 signalling in lipid rafts: new ligands and co-receptors. Curr. Opin. Lipidol. 13, 513-521.
Shanmugam, N., Kim, Y. S., Lanting, L. and Natarajan, R. (2003) Regulation of cyclooxygenase-2 expression in monocytes by ligation of the receptor for advanced glycation end products. J. Biol. Chem. 278, 34834-34844.
Sharma, H., Bose, A., Sachdeva, R., Malik, M., Kumar, U. and Pal, R. (2022) Haemoglobin drives inflammation and initiates antigen spread and nephritis in lupus. Immunology 165, 122-140.
Shephard, F., Greville-Heygate, O., Marsh, O., Anderson, S. and Chakrabarti, L. (2014) A mitochondrial location for haemoglobins-dynamic distribution in ageing and Parkinson's disease. Mitochondrion 14, 64.
Singh, A., Kukreti, R., Saso, L. and Kukreti, S. (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24, 1583.
Skjørringe, T., Burkhart, A., Johnsen, K. B. and Moos, T. (2015) Divalent metal transporter 1 (DMT1) in the brain: implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front. Mol. Neurosci. 8, 141190.
Smeds, E., Romantsik, O., Jungner, Å., Erlandsson, L. and Gram, M. (2017) Pathophysiology of extracellular haemoglobin: use of animal models to translate molecular mechanisms into clinical significance. ISBT Sci. Ser. 12, 134-141.
Smith, A. N., Shaughness, M., Collier, S., Hopkins, D. and Byrnes, K. R. (2022) Therapeutic targeting of microglia mediated oxidative stress after neurotrauma. Front. Med. 9, 1034692.
Solár, P., Zamani, A., Lakatosová, K. and Joukal, M. (2022) The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. FBCNS 19, 1-79.
Son, Y., Cheong, Y.-K., Kim, N.-H., Chung, H.-T., Kang, D. G. and Pae, H.-O. (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ros activate MAPK pathways? J. Signal Transduct. 2011, 1-6.
Stefanova, N., Fellner, L., Reindl, M., Masliah, E., Poewe, W. and Wenning, G. K. (2011) Toll-like receptor 4 promotes α-synuclein clearance and survival of nigral dopaminergic neurons. Am. J. Pathol. 179, 954-963.
Strijkova-Kenderova, V., Todinova, S., Andreeva, T., Bogdanova, D., Langari, A., Danailova, A., Krumova, S., Zlatareva, E., Kalaydzhiev, N., Milanov, I. and Taneva, S. G. (2022) Morphometry and stiffness of red blood cells-signatures of neurodegenerative diseases and aging. Int. J. Mol. Sci. 23, 227.
Sudan, K., Vijayan, V., Madyaningrana, K., Gueler, F., Igarashi, K., Foresti, R., Motterlini, R. and Immenschuh, S. (2019) TLR4 activation alters labile heme levels to regulate BACH1 and heme oxygenase-1 expression in macrophages. Free Radic. Biol. Med. 137, 131-142.
Su, X., Maguire-Zeiss, K. A., Giuliano, R., Prifti, L., Venkatesh, K. and Federoff, H. J. (2008) Synuclein activates microglia in a model of Parkinson's disease. Neurobiol. Aging 29, 1690.
Thomsen, J. H., Etzerodt, A., Svendsen, P. and Moestrup, S. K. (2013) The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxid. Med. Cell Longev. 2013, 11.
Underly, R. G. and Shih, A. Y. (2021) Rapid, nitric oxide synthesis-dependent activation of MMP-9 at pericyte somata during capillary ischemia in vivo. Front. Physiol. 11, 619230.
Van Gorp, H., Delputte, P. L. and Nauwynck, H. J. (2010) Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol. Immunol. 47, 1650-1660.
Venezia, S., Refolo, V., Polissidis, A., Stefanis, L., Wenning, G. K. and Stefanova, N. (2017) Toll-like receptor 4 stimulation with monophosphoryl lipid A ameliorates motor deficits and nigral neurodegeneration triggered by extraneuronal α-synucleinopathy. Mol. Neurodegener. 12, 52.
Vermot, A., Petit-Härtlein, I., Smith, S. M. E. and Fieschi, F. (2021) NADPH Oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants 10, 890.
Versele, R., Sevin, E., Gosselet, F., Fenart, L. and Candela, P. (2022) TNF-α and IL-1β modulate blood-brain barrier permeability and decrease amyloid-β peptide efflux in a human blood-brain barrier model. Int. J. Mol. Sci. 23, 10235.
Villalpando-Rodriguez, G. E. and Gibson, S. B. (2021) Reactive Oxygen Species (ROS) regulates different types of cell death by acting as a rheostat. Oxid. Med. Cell Longev. 2021, 9912436.
Walter, L., Canup, B., Pujada, A., Bui, T. A., Arbasi, B., Laroui, H., Merlin, D. and Garg, P. (2020) Matrix metalloproteinase 9 (MMP9) limits reactive oxygen species (ROS) accumulation and DNA damage in colitis-associated cancer. Cell Death Dis. 11, 767.
Wang, X., Mori, T., Sumii, T. and Lo, E. H. (2002) Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons. Stroke 33, 1882-1888.
Wang, Y. Q., Zhang, J., Zhu, L. X., Yu, J. J., Liu, M. W., Zhu, S. T., Liu, G. J. and Peng, B. (2019) Positive correlation between activated CypA/CD147 signaling and MMP-9 expression in mice inflammatory periapical lesion. Biomed. Res. Int. 2019, 8528719.
Weinlich, R., Oberst, A., Beere, H. M. and Green, D. R. (2017) Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 18, 127-136.
Wei, X., Zhang, F., Cheng, D., Wang, Z., Xing, N., Yuan, J., Zhang, W. and Xing, F. (2024) Free heme induces neuroinflammation and cognitive impairment by microglial activation via the TLR4/MyD88/NF-κB signaling pathway. Cell Commun. Signal. 22, 1-15.
Whitmarsh, A. J. and Davis, R. J. (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med. 74, 589-607.
Wu, C. W., Liao, P. C., Yu, L., Wang, S. T., Chen, S. T., Wu, C. M. and Kuo, Y. M. (2004) Hemoglobin promotes Abeta oligomer formation and localizes in neurons and amyloid deposits. Neurobiol. Dis. 17, 367-377.
Wu, L., Xian, X., Xu, G., Tan, Z., Dong, F., Zhang, M. and Zhang, F. (2022) Toll-like receptor 4: a promising therapeutic target for Alzheimer's disease. Mediators Inflamm. 2022, 7924199.
Xiaowu, H., Xiufeng, J., Xiaoping, Z., Bin, H., Laixing, W., Yiqun, C., Jinchuan, L., Aiguo, J. and Jianmin, L. (2010) Risks of intracranial hemorrhage in patients with Parkinson's disease receiving deep brain stimulation and ablation. Parkinsonism Relat. Disord. 16, 96-100.
Yang, C., Qiu, Y., Wang, J., Wu, Y., Hu, X. and Wu, X. (2020a) Intracranial hemorrhage risk factors of deep brain stimulation for Parkinson's disease: a 2-year follow-up study. J. Int. Med. Res. 48, 1-10.
Yang, W., Li, X., Li, X., Li, X. and Yu, S. (2016) Neuronal hemoglobin in mitochondria is reduced by forming a complex with α-synuclein in aging monkey brains. Oncotarget 7, 7441.
Yang, W., Li, X., Li, X. and Yu, S. (2020b) Hemoglobin-α-synuclein complex exhibited age-dependent alterations in the human striatum and peripheral RBCs. Neurosci. Lett. 736, 135274.
Yuan, S., Liu, Z., Xu, Z., Liu, J. and Zhang, J. (2020) High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J. Hematol. Oncol. 13, 1-19.
Yu, N., Pasha, M. and Chua, J. J. E. (2024) Redox changes and cellular senescence in Alzheimer's disease. Redox Biol. 70, 103048.
Zanoni, I., Ostuni, R., Marek, L. R., Barresi, S., Barbalat, R., Barton, G. M., Granucci, F. and Kagan, J. C. (2011) CD14 controls the LPS-induced endocytosis of toll-like receptor 4. Cell 147, 868.
Zhang, Y., Su, S. S., Zhao, S., Yang, Z., Zhong, C. Q., Chen, X., Cai, Q., Yang, Z. H., Huang, D., Wu, R. and Han, J. (2017) RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat. Commun. 8, 1-14.
Zhao, N., Francis, N. L., Song, S., Kholodovych, V., Calvelli, H. R., Hoop, C. L., Pang, Z. P., Baum, J., Uhrich, K. E. and Moghe, P. V. (2022a) CD36-binding amphiphilic nanoparticles for attenuation of α-synuclein-induced microglial activation. Adv. Nanobiomed. Res. 2, 2100120.
Zhao, Y., Gan, L., Ren, L., Lin, Y., Ma, C. and Lin, X. (2022b) Factors influencing the blood-brain barrier permeability. Brain Res. 1788, 147937.
Zhou, Z., Behymer, M. and Guchhait, P. (2011) Role of extracellular hemoglobin in thrombosis and vascular occlusion in patients with sickle cell anemia. Anemia 11, 916918.