2023 Impact Factor
Ajou University, School of Pharmacy, Suwon 443-749, Republic of Korea
Photobiomodulation utilizes monochromatic (or quasimonochromatic) light in the electromagnetic region of 600∼1000 nm for the treatment of soft tissues in a nondestructive and nonthermal mode. It is conceivable that photobiomodulation is based upon the ability of the light to alter cell metabolism as it is absorbed by general hemoproteins and cytochrome c oxidase (COX) in particular. Recently it has been suggested radiation of visible and infrared (IR) activates retrograde signaling pathway from mitochondria to nucleus. In this review, the role of COX in the photobiomodulation will be discussed. Further a possible role of water as a photoreceptor will be suggested.
A famous experiment carried out by Otto Warburg uncovered the enzyme responsible for the critical step of cellular respiration (Lane, 2006), which converts the energy conserved in foods to ATP the cell can use. The enzyme he identified is cytochrome oxidase (COX), which is a major player in cellular energy metabolism. To extract energy from exogenous molecules, the cells break down ingested glucose to more simple molecules
The method that Warburg used to discover is rather intriguing since he has exploited two seemingly unrelated things; carbon monoxide (CO) and light (Lane, 2006). While CO can block cellular respiration by binding and inhibiting COX in place of oxygen, a flash of light can displace the gas molecule. Thus oxygen can bind to the enzyme again and utilize it to produce ATP (Fig. 1). Cells frequently use CO and nitric oxide (NO) to block cellular respiration (Moncada and Bola?os, 2006; Zuckerbraun
Both gas molecules are constantly synthesized in the body
Coincidently, light has long been considered to augment wound healing (Mester
Laser PBM, also called as low-energy laser therapy, manifests the utilization of monochromatic or quasimonochromatic low-level light to induce mainly non-thermal and non-invasive photochemical activities (Mester
However, it has been demonstrated that PBM could stimulate or inhibit a wide variety of cellular processes, thereby modulating cell functions (Mester
Other investigations demonstrate that PBM can activate regenerative responses, alone or associated with stem cell therapy (Desmet
One of the most studied PBM would be an arena of wound healing. Low-density red laser light therapy was first introduced to accelerate would healing in 1970’s (Mester
Zhang
Researchers studied that near IR therapy protects from methanol poisoning (Eells
Heme cofactors are found in many proteins (Kim
A wide variety of heme axial ligands are known (Munro
Probably hemes are the most easily identifiable cofactors since their conjugated porphyrin structures give rise to electronic transitions in the visible region and strong red color (Munro
Oxidative phosphorylation take place in mitochondria composed of four complex (Wong-Riley
The rationale of retrograde signaling from mitochondria is based upon 2 observations. First, PBM (300?860 nm) can increase in DNA synthesis rate in cultured cells. However, the nucleus does not have chromophores absorbing light in this range of spectrum. Second, cumulating data by this time clearly shown that the photoacceptors are localized to the respiratory chain of mitochondria (Karu, 2008). Therefore it would be reasonable to propose the existence of cellular signaling pathway originated from this organelle. Experimental data also support retrograde signaling can be mediated
As described above, the analysis of the PBM action on DNA and RNA synthesis rate at the wavelength range 330∼860 nm helped conclude that in fact COX acts as a photoacceptor (Karu, 2008). The band peaks of light for the activation of DNA synthesis were identified by analogy with metal-ligand absorption spectra, which span through visible, near IR ranges. This conclusion goes also well with Warburg’s old experimental data (Lane, 2006).
Mitochondria are the central organelle for diverse cellular functions as an integrator of signals originated from outside or inside of the cells (Lee
Recently Karu (2008) provides a summary for the mitochondrial retrograde signaling which operates in the irradiated cells. As described above, the retrograde signaling is associated with mitochondrial membrane potential, ROS and calcium mobilization. In some cases biological gases are involved in the signaling pathway by binding to heme center of a certain hemoproteins in general, COX in particular. Mitochondria have their own gas-synthesizing enzymes, mtNOS and heme oxygenase-1 (Slebos
Retrograde signaling pathway transduces the signal
The IR absorption spectrum of water was known as early as 1950’s (Curcio and Petty, 1951). With advances in new technology the absorption spectra of water was more clearly demonstrated (Santana-Blank
In biological milieu, intracellular proteins may serve as a surface for water structuring. Interestingly, it has been reported that PBM can increase potential energy in the EZ water, which in turn, acts as an energy reservoir. The reserved energy, then, can selectively supply energy demands in cells (Pollack, 2013).
The behavior of cells is one of the current topics in cell biology. Water contents in tumor cells may different from those found in normal cells (Pollack, 2013). Cellular aging and neurodegenerative diseases are at least in part attributed to the impairment of water handling in cells or organisms (Pollack, 2013). If PBM can modulate the behavior of water in some ways, it would affect the integrity of biological molecules including DNA and proteins. It warrants further investigations.
PBM including near IR irradiation therapy starts its journey to cell biology and medicine. The molecular target of PBM might be a variety of hemoproteins, but COX was the only target to be investigated actively. In addition, the targets of the PBM may be a simple molecule, water. Two-thirds by volume, 99% by number are water in mammalian cells. But water research is in its embryo state, slowing the better understanding of cell biology.