Biomolecules & Therapeutics : eISSN 2005-4483 / pISSN 1976-9148

Table. 1.

Table 1 Phytochemicals with anti-depressive effects in stress-induced depressive animals and their possible molecular mechanisms

Name Experimental model Effects References
Apigenin (Carduus crispus; Elsholtzia rugulosa) Corticosterone induced depression ↑BDNF Weng et al., 2016
Baicalein (The root of Scutellaria baicalensis) Chronic unpredictable mild stress (CUMS) ↑BDNF, ↑pERK Xiong et al., 2011
Curcumin (Curcuma longa) Chronic mild stress (CMS)/CUMS ↑BDNF, ↑p-ERK Xu et al., 2007; Hurley et al., 2013; Liu et al., 2014; Choi et al., 2017
Cytisine (Natural plant alkaloid) CUMS ↑pCREB, ↑BDNF, ↑pAkt, ↑pmTOR(p70s6k) Han et al., 2016
7,8-dihydroxyflavone (Godmania aesculifolia) CMS ↑BDNF Chang et al., 2016
Dihydromyricetin (Ampelopsis grossedentata) CUMS ↑ERK1/2-CREB pathway, ↑pGSK-3β(ser9), ↑BDNF Ren et al., 2018
S-equol (Soy isoflavone metabolite) LPS challenge ↑pSYN, ↑SYN, ↑PSD95 Lu et al., 2021
Fisetin (Strawberry extract) Chronic restraint stress ↑TrkB signaling, ↑pTrkB Wang et al., 2017
(-)-Gallocatechin gallate (high-temperature-processed green tea extract) Ovariectomized rats ↑TrkB pathway,
ameliorates the synaptic impairments
Ko et al., 2021
Gallic acid (Gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants) CMS ↑BDNF, ↑pTrkB, ↑mTOR (p70s6k and 4E-BP-1) Zhu et al., 2019
Hesperidin (Hemerocallis citrina) CUMS ↑pERK1/2, ↑BDNF/TrkB pathways Li et al., 2016; Fu et al., 2019
Honokiol (Magnolia officinalis) CUMS ↑BDNF Wang et al., 2018a
Hyperforin (Hypericum perforatum L.) CUMS ↑BDNF Szewczyk et al., 2019
Isorhynchophylline (The stem of Uncaria rhynchophylla) CUMS Modulating the PI3K/AKT/GSK-3β Xian et al., 2019
Malvidin3′-O-glucoside (Vaccinium arboreum) Repeated social defeat stress model Rac1 gene, ↑synaptic plasticity mediator that is involved in modulating dendritic spine formation Wang et al., 2018b
Naringenin (Abundantly present in the peel of citrus fruits) CUMS ↑BDNF Yi et al., 2014b; Tayyab et al., 2019
Nobiletin (Citrus fruits) CUMS ↑BDNF/TrkB pathways Li et al., 2013
Oleanolic acid (Olive oil) CUMS BDNF/ERK/CREB signalling miR-132 Yi et al., 2014a
Paeoniflorin (Radix paeoniae) CUMS ↑BDNF, ↑p-CREB Hu et al., 2019
Psilocybin (Psilocybe, such as P. azurescens, P. semilanceata, and P. cyanescens) Chronic multimodal stress paradigm Promote synaptic strengthens hippocampal TA-CA1 synapses Hesselgrave et al., 2021
Puerarin (Bupleurum chinense DC.) Spared nerve injury-induced mice Activating ERK/CREB/BDNF pathways Zhao et al., 2017
Quercetin (Rosa Chinensis Jacq. Hypericum perforatum) LPS challenge ↑BDNF, ↑pTrkB Fang et al., 2019
Resveratrol (Polygonum cuspidatum) CUMS ↑pmTOR, ↑pAkt, ↑ERK, ↑pCREB, ↑BDNF, ↑Synaptophysin liu et al., 2016b; Shen et al., 2018
Ginsenoside Rg1 (Panax ginseng) CUMS ↑BDNF, ↑p-CREB, ↑p-PKA, ↑PSD95, ↑Synaptic plasticity fators (miR-134↓, Limk1↑, p-cofilin↑), ↑Spine density, ↑Synapse number Liu et al., 2016c; Zhu et al., 2016; Fan et al., 2018a; Yu et al., 2018
Ginsenoside Rg2, Rg3, Rg5 (Panax ginseng) CUMS/chronic social defeat stress ↑BDNF, ↑pTrkB, ↑pCREB Ren et al., 2017; Xu et al., 2017; You et al., 2017; Zhang et al., 2017
Ginsenoside Rh (Panax ginseng) LPS challenge ↑BDNF↑, ↑TrkB Chen et al., 2019
Rutin (Hypericum perforatum L.) Maternal Separation Stress-induced mice ↓NR2B, ↓NR2A, ↑CA3 diameter Anjomshoa et al., 2020
Saikosaponin A (Bupleurum chinense DC.) CUMS ↑BDNF/TrkB pathways Chen et al., 2018
Saikosaponin D (Bupleurum chinense DC.) CUMS ↑pCREB, ↑BDNF Li et al., 2017
Schisantherin B (Schisandra chinensis (Turcz.)) Forced swimming test-induced mice ↑GLT-1by promoting PI3K/AKT/mTOR pathway Xu et al., 2019
Silibinin (Silybum marianum) LPS challenge ↓Neuronal loss, ↑BDNF/TrkB pathways Song et al., 2016
Sulforaphane (Cruciferous vegetables) LPS challenge Alteration of BDNF, PSD95, GluA1, dendritic spine density Zhang et al., 2017
Tetramethylpyrazine (Ligusticum wallichii) Chronic social defeat stress model ↑pCREB, ↑BDNF, ↑pERK, ↑pAKT Jiang et al., 2015
Biomolecules & Therapeutics 2023;31:148~160 https://doi.org/10.4062/biomolther.2022.116
© Biomolecules & Therapeutics