Biomolecules & Therapeutics : eISSN 1976-9148 / pISSN 2005-4483

Cited by CrossRef (7)

  1. Min Woo Kim, Wenjing Wang, Mateo I Sanchez, Robert Coukos, Mark von Zastrow, Alice Y Ting. Time-gated detection of protein-protein interactions with transcriptional readout. 2017;6
    https://doi.org/10.7554/eLife.30233
  2. Mohammad M. Ahmadzai, David Broadbent, Christopher Occhiuto, Canchai Yang, Rupali Das, Hariharan Subramanian. G Protein-Coupled Receptors in Immune Response and Regulation. 2017.
    https://doi.org/10.1016/bs.ai.2017.05.004
  3. Abraham Madariaga-Mazón, Andrés F. Marmolejo-Valencia, Yangmei Li, Lawrence Toll, Richard A. Houghten, Karina Martinez-Mayorga. Mu-Opioid receptor biased ligands: A safer and painless discovery of analgesics?. Drug Discovery Today 2017;22:1719
    https://doi.org/10.1016/j.drudis.2017.07.002
  4. Kyeong-Man Kim. Conceptual Progress for the Improvements in the Selectivity and Efficacy of G Protein-Coupled Receptor Therapeutics: An Overview. Biomolecules & Therapeutics 2017;25:1
    https://doi.org/10.4062/biomolther.2016.262
  5. Leif Hertz, Ye Chen. Glycogenolysis, an astrocyte-specific reaction, is essential for both astrocytic and neuronal activities involved in learning. Neuroscience 2017
    https://doi.org/10.1016/j.neuroscience.2017.06.025
  6. Thomas M. Tzschentke, Babette Y. Kögel, Stefanie Frosch, Klaus Linz. Limited potential of cebranopadol to produce opioid-type physical dependence in rodents. Addiction Biology 2017
    https://doi.org/10.1111/adb.12550
  7. Thomas M. Tzschentke, Kris Rutten. Mu-opioid peptide (MOP) and nociceptin/orphanin FQ peptide (NOP) receptor activation both contribute to the discriminative stimulus properties of cebranopadol in the rat. Neuropharmacology 2018;129:100
    https://doi.org/10.1016/j.neuropharm.2017.11.026